Achieving Efficiency and Fairness for Association
Control in Vehicular Networks

Abstract—Deploying city-wide 802.11 access points has maderather small indoor network and (2) the existing algorithms
possible internet access in a vehicle, nevertheless it isattenging  are unable to accommodate the dynamic creation and removal
to maintain client performance at vehicular speed especiy ¢ ihe possible communication links in the network graph.

when multiple mobile users exist. This paper considers the ; . .
association control problem for vehicular networks in drive- We believe that a thorough theoretical study on this problem

thru Internet scenarios. In particular, we aims to improve the IS highly necessary for the future deployment of this type of
overall throughput and fairness for all users. We design effiient networks. Some pitfalls can be avoided in real deployment if

algorithms to achieve the objectives through several tectigues e have a better understanding about it first.
including approximation. Our simulation results demonstrate ;g haner aims to define a theoretical framework to analyze
that our algorithms can achieve significantly better perfomance . . .
than conventional approaches. the performan(_:e pf a v_ehlcular _netwo_rk in tlﬁmve-thrg _
Internet scenario, in particular to investigate the association
|. INTRODUCTION control scheme. Considering both the long-term efficiemzy a
Advanced technologies in communication have made ubifgirness metrics, we propose optimized schemes to associat
uitous network connectivity - anywhere, anytime - a redlity mobile users with APs, and approximation algorithms to re-
mobile users. Wi-Fi technology is one of them, which progideduce computation complexity of calculating optimal saus.
users easy access to the Internet through nearby WLAN accéliBough there is some previous work related to this topic
points. WLAN-based access points (AP) can provide cog4t][2][3], they all focus on the measurement study on velicu
effective wireless Internet access with a shared grossrdtga internet access. To the best of our knowledge, this is the firs
that ranges from 10 to 50 Mbit/s and can be scalable to huheoretical work that investigates the optimization pesblfor
dreds of concurrently-active users. Not limited to corpiora association control over vehicular users in Wi-Fi networks
office, or home use for comparably stationary user, the accdhe contributions are summarized as follows:
points, in theDrive-thru Internefl][2], are recently proposed 1) We propose a theoretical framework for association
to be deployed along the roads, thus providing continuoaentrol over vehicular networks. For the efficiency metiie
network connectivity to mobile users in vehicles. Howeveproblem is transformed into an optimization problem forteac
for outdoor access of mobile users at high vehicular speedeapshot over the long-term service duration, and forredlat
due to the dynamically changing network structure of APrusas an integral linear program. For the fairness metric, vet fir
pairing and contentions among mobile users, it is still a bigrmulate the problem as a convex program in the offline
challenge to maintain a good client performance. setting, and further propose a dynamic weight based online
In order to achieve reasonable efficiency among multiplgorithm to achieve proportional fairness.
vehicular users for the abowvBrive-thru Internetscenario, 2) When the involved number of mobile users and APs
several problems should be considered, e.g., rate adaptatilong the road is rather large, to reduce the computation
and association control. Association control defines, avhicomplexity, we propose an approximation algorithm to break
multiple users are driving along the road, how to intellidgn the large contention group into smaller sub-groups, aahgev
associate these mobile users to specific APs and whenattradeoff between accuracy and computation complexity.
appropriately conduct handoffs of APs for users to improve The rest of the paper is organized as follows. We present
the overall system performance. Compared with rate adaptelated work in Section Il. We define the performance metrics
tion, association control considers the entire networknfr@ and introduce our model and assumptions in Section IIl. We
macro-level perspective, which shows how to optimize systeillustrate our overall optimization and snapshot solutidn
performance from a higher level viewpoint. Section 1V, respectively for efficiency and fairness. We in-
We notice that, albeit some recent work on associatiaroduce our group-based methodology to simplify assamiati
control for static networks, there is little work on how tacontrol in Section V. We show simulation results in Section
manage AP association in this type of “Vehicular NetworksVI, and we conclude the paper in Section VII.
Compared with a static network, this type of network is com-
posed of continuously moving clients that may constantly tr
to associate with the nearby APs. Algorithms that solveliert Association control and scheduling solutions for Wireless
association control problem in a static network are nobslét LANs have been intensely studied [4] [5] [6], mainly targeti
because (1) a vehicular network is a much larger netwottke efficiency and fairness metrics. Tassiulas et al. censid
composed of thousands of cars and APs compared withmax-min fair allocation of bandwidth in wireless ad-hoc
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networks [4], and propose a fair scheduling system whichWe denote the set of APs a4 indexed byl,...,m and
assigns dynamic weights to the flows. Bejerano et al. preseieinote the set of users &sindexed byl, ...,n. We consider
an efficient solution to determine the user-AP associati@ssociation control over the time intenjal 7. For example,
for max-min fair bandwidth allocation [5], by leveragingeth 0 andT may respectively denote: 00 and24 : 00 time points
strong correlation between fairness and load balancing. @bevery day. For each user-AP p&it, i), we assume that the
balance aggregate throughput while serving users in a faifective bit rater; ;(¢) of the link betweern; andi at timet
manner, Li et al. consider proportional fairness over weissl is known. We usé;(¢) to denote the bandwidth allocated to
LANs [6]. They propose two approximation algorithms fouser; at timet. Both bit rate and bandwidth can be measured
periodical offline optimization. in bits per second (bit/s). For bandwidth allocation insédeh
Internet access with roadside WiFi access points for vehichiP, we use time-based fairness for scheduling. Once an AP is
lar users under vehicular speeds has been studied in recengissociated to some users, each user is assigned an eauahl-siz
search works [1][2][3][71[8][9][10][11][12][13]. Bychkvsky time slot regardless its effective bit rate, and is suppdsed
et al. study the case for vehicular clients to connect to epanse all the allocated bandwidth. Thusiifusers are associated
access residential wireless 802.11 access points in Bfsfon with AP ¢ at time¢, then the bandwidth allocated to ugeis
Giannoulis et al. address the problem of maintaining cliebj(t) = r; ;(t)/n’.
performance at vehicular speeds within city-wide multpho For the effective bit rate setting in thHerive-thru Internet
802.11 networks [3]. Ott and Kutscher report on measuresnestenario, we adopt the model proposed in [2]. Fig. 1 depicts
for the use of IEEE 802.11 networks in tddave-thru Internet three different connectivity phases with respect to efffect
scenario [2]. They measure transmission characteristics it rate and relative distance. The entry phase and exitgphas
vehicles moving at different speeds, and provide analysis provide very weak connectivity, only the production phase
the expected performance. Mahajan et al. deploy a modg¥tevides a window of useful connectivity. As the connection
size testbed to analyze the fundamental characteristicsi®built between a user and an AP, it will maintain a constant
WiFi-based connectivity between base stations and vehiclgt rate in the production phase, which mainly depends on
in urban settings [9]. Hadaller et al. give a central messatjee AP’s signal strength and the user’s driving speed. Qonve
that wireless conditions in the vicinity of a roadside ascesionally the faster the user’s speed is, the lower bit rate th
point are predictable and that by exploiting this inforraati user can achieve. The bit rate can basically keep fixed while
vehicular opportunistic access can be greatly improved. [16he user’s speed does not change too much. Therefore for each
Kim et al. present novel association control algorithms thapecified user we can approximately model the bit rates of APs
minimize the frequency of handoffs occurred to mobile desic as square waves. As Fig. 2 shows, we allow nonuniform AP
[11]. In the case of a single user, the optimization of thaltotdeployments along any user’s driving trajectory which el
throughput with handoff time taken into account is studied ieffective ranges, neighbor distances and effective bisrat
[12]. We then divide these regions into non-overlapgedivalence
Classesas Eq,, Eqo, ..., Eq,. Each Eq; denotes a section
I1l. PERFORMANCEMODELS AND METRICS of the roads, and within each section the candidate AP set
A. Models and Assumptions :;gcﬁgéejggrr'ldmg effective bit rates will keep fixed for the
In the Drive-thru Internet scenario, vehicular users ar
driving through a region covered with multiple roads, an i ) o ]
APs are deployed along the roads in a nonuniform approachYVe consider two important performance metrics in this
Each AP has a limited coverage range and it can only sesdy: efficiency and fa|rne_ss. Efficiency is measur_ed wnh
users that reside in its coverage area. Conventionally edBf overall throughput received by all users and fairness is
user on the roads may have one or more candidate APsi@gegulate the association control so that all users wi¥eha
associate with at any time, and each time the user can ofair distribution of bandwidth as much as possible.
associate with exactly one AP. Furthermore, contentions fo or efficiency, we aim to maximize the overall throughput
transmission may exist among users if they associate with #ie" @ll vehicular users. The throughput for any user is the
same AP. If a large number of users associate with the safi{¢"age message delivery rate during the user's servieedper
AP, their allocated bandwidths will be greatly reduced. Wand it is usually measured in bits per second (bit/s). Heace f
assume that different users have various velocities (e 2nY USeU, given the service duratio;, ; +-7;] and the allo-
speeds and directions) which may vary over the time. ThG&ted bandwidth; () attimet € [¢;, ¢; + T, we can express
while users are driving along the roads, at different tim@e throughputB; for userj as B; = - [, b;(t)d(t).
instants and positions, they may be contending with differeConsider the overall time intervill, T'], during intervalg0, ¢ ;]
users for bandwidth from different APs. Each user assaia@nd[t; + T, T], we actually have;(t) = 0, thus we have an
with the first AP after first entering the Wi-Fi deploymenequivalent uniform notion a®; = Tl] j;JT b;(t)d(t).
area, then goes through a series of hand-offs among differenAssociation control without considering fairness may lead
APs while driving along the roads, and disconnects at the lds the starvation of users with poor signal strength. To wars
associated AP before leaving the Wi-Fi deployment area. fairness, two metrics are used frequently in literaturexmén
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fairness [5] and proportional fairness [6][14]. We use mmep can be further denoted as

tional fairness in this paper because it can achieve a better w. [T
trade-off between efficiency and extreme fairness. Suppose ?J b (t)d(t). (1)
the throughput allocation for alh users can be denoted as jeu ~J 70

a vectorB = (B1, B, ..., B,). By definition, an allocatior’

Herew; denotes priority for different users, and it is a fixed
is “proportionally fair’ if and only if, for any other feasible v P y

= 5 B op value for specified usef. Similarly if we choose proportional
allocation B, lei‘l —=— < 0. In other words, any changefairness as the metric, the optimization objective is to max
in the allocation must have a negative average change. It Imaige ZJEU w; In B;, which can be further denoted as

been proved that the unique proportionally fair allocatam T
be obtained by maximizing'(B) =}, In(B;) over the set Z w»ln(i/ b;(£)d(1)) )
of feasible allocations [15]. TNy Sy '

jeu J
Effective Bit Rates (kbits/s) The above two objectives are optimization metrics over
Entry Phase | Production Phase | BxitPhase the duration of service period for all users. As we aim to

continuously construct optimized assignments of usersRe A
within this duration, we use the term “snapshot” to denote th
small time interval within which we have to make a decision
about AP association for all users. Thus it is necessary for
| | 1 us to find solutions for each snapshot to achieve the overall
e s optimal performance.

Distance (m)

A. Snapshot Optimization for Efficiency

Fig. 1. Three connectivity phases We first prove a theorem.
Theorem 1:For the efficiency metric, it is sufficient to
maximize Y., +1b,(t) for each snapshat to achieve the
Effective Bit Rates (kbits/s) ZﬂiU Ty .J( ) P
AP long-term optimization goal.
APl AP4 Proof: For the efficiency metric, we are to maximize
s APS fo = 0 % [, b;(t)d(t) according to (1). Asu; andT;
are constants with time for each usgerwe have

T 0 T W
fo = Z/O ?jbj(t)d(t) :/0 Z?J_bj(t)d(t)-

Eql  Eq2 Eq3 Eq4  Eg5 Eq Eq7  Eq Eq9 = Distance Jjeu jeu J

As T is a constant, for each snapshotwe only have to

Fig. 2. Nonuniform AP deployments along user’s driving ecipry maximizez - %bj(t) for optimization. ]
J IRE - '
Since all APs are deployed by the same organization, aTheoreml_ e_sse”“a”y tells us that we can optimize for effi-
ncy metric in each snapshot to achieve overall perfooman

centralized control scheme is possible as proposed in [1I “the offl i readv knod. in the obiecti
Therefore based on the above models and assumptions, we nti € offine seting, we aiready knoWy In the objective
unction. In the online setting, we have to estimdiebased

to build a centralized association control system and oaf g , o
n the user’s current speed(t). Suppose usej gives the

is to continuously construct optimized assignments of APSE ving traiectory o th tralized th h deikik
users as they are driving along the roads, respectivelyngaki rving trajectory to the centralized Server through desiske
PS. Knowing the overall distancg; and the distance;(t)

the efficiency and fairness metrics into consideration. Vet “has t led at i " v estimat
consider both offline and online settings of the optimizatio atusep has traveled at timg we can C%?J?jlfguiies imate

problem. In the offline setting, we assume that we know tHe for user?' at snapshot gsmgTj(t) - vf(t) ,
mobility patterns and trajectories of vehicular users imeante, To describe the constraints in this prcl>b.em formula'u_on for
in other words, we are given the candidate AP deft) for each snapshat we formulate the association problem into a

each usey at each time € [0, 7] as part of the problem input. IN€ar program (LP) as proposed in [6]. We use a fractional
In the online setting, eacH; (¢) is revealed only at time, at variablepi ;(t) to denote the fraction of time that ARlevotes
which time instant, we have to instantaneously select an A® User;. For each APi and userj, if j is associated with

from A, (t) to associate for each usgwithout any knowledge * thenp; ;(t) _is'a fraction between 0 and 1; if usgris not
of the future setsA; (') for ¢’ € [t, ). associated withi, then the fraction is 0. Since each usger

is assigned to only one AP for the integral solution, there is

exactly one non-zerp, ;(t) for eachi € A. We can first relax

this constraint and assume that one user can associate with
For the efficiency metric, with a set of vehicular uséfs multiple APs for the fractional solution. Then the bandwidt

on the roads, the objective is to maximixe,_,; w; B;, which  b;(t) allocated to each usef can be depicted as;(t) =

IV. OVERALL OPTIMIZATION AND SNAPSHOTSOLUTION



> icaTij(t)pi;(t). Thus we can obtain a fractional solutiorand communication cost. Without loss of generality, we as-

from the following linear program formulation: sume that the boundaries of a AP’s effective range will not
o w; coincide with the others. Fig. 3 shows an example of the

mmmmz Fb-j(t) () vehicular scenario, where a set of usérs, Us, ..., U, are

, jev trying to drive throughEquivalence Classesver the time

subject to span[0,T]. Thus we can divide the overall time spfn T
VieU b;(t)= Zri,j(t) i (1) (4) into smaller time intervals according to the boundaries of
i€A Equivalence Classesver the time span. We denote these

vied S opit) <1 (5) time intervals agto, ], [ty to], ..., [t,_y,t,]. We rely on the
jeu following theorem to devise an efficient handoff strategy fo

vjeu Zpi,j(t) <1 (©) efficiency metric.

Theorem 2:For optimal association control to maximize

) the efficiency metric, handoffs to new association solwion
for users only happen when at least one user is crossing the

vjieU bj(t)=C (8)  boundaries oEquivalence Classe#t each boundary the user

The first constraint definels; (¢), the bandwidth allocated to Will meet with one of the following cases: (1) new candidate
userj at time pointt. The second constraint means that th&P is detected; (2) original optimal AP is lost and (3) or@in
overall allocated time fraction of each ARo all users cannot candidate AP is lost. For cases (1) and (2), new association
be more than 1. The third constraint states that the overg@introl is necessary. For case (3), new association coistrol
allocated time fraction of each usgthat communicates with Not needed, so the original optimized solution holds.
all APs cannot be more than 1. The fourth constraint shows Proof: According to objective functiorh”;;; 72b;(t),
that the time fraction is between 0 and 1. To ensure that evéhg weightw; and service duratiofT; for each userj are
user is able to maintain connectivity to the internet wittiie fixed all the time. When all users are within the boundaries of
service duration, the fifth constraint guarantees thatyewser Equivalence Classeshe effective bit rates; ;(¢) are never
has a minimum bandwidth of at any timet, whereC is changed, which indicates that all parameters for the opti-
a constant value for the lower bound. For tere efficiency mization problem are not changed, thus the optimal solution
goal we setC' = 0 by default. holds. For case (1), as a new candidate AP is detected, one
For completeness, we describe briefly in the following hoffective bit rater; ;(¢) will change from 0 to a positive value,
to find the integral solution based on the fractional solutioSo the computation of a new optimal association solution is
After we obtainp;, ;(t) for each user-AP pair, we can furthemecessary. For case (2), since the original optimal AP is los
calculate the fractional assignment ;(t) = %ﬁi)a(t) a new optimal association solution is definitely necesdewy.
which reflects the fraction of usef's total bandwidth that case (3) we prove by contradiction that new associatiorrobnt
it expects to get from AR. Apparently0 < z; ;(t) < 1. We IS not necessary. We .denote the former equwalen_ce class as
can view the assignment as a bipartite graph. Then the fifgt: and the new equivalence class &g;. Assume inEq;
integral solution is a set of binary variables; (¢) for all user- Some user will switch to a different AP for a new optimal
AP pairs, wherei; ;(t) is equal to 1 if usey is associated to Solution. Thus we can use new bandwidth a”OijltbQ@)
AP i and 0 otherwise. We use the rounding algorithm propos#f users to improve the objective function ., 7-b;(t) >
by Shmoy and Tardos [17] to calculate the integral squtioEjeU %bj (t). As only one original candidate AP is lost for
#;,j(t). Readers can refer to [6] for detailed description.  some user inEq;, each user’s candidate AP set fBY; is a
0 T subset or equivalent set of the one ;. So we can apply
L L e L this new solution taFg;, so as to further improve the objective
P ‘ ‘ P function, but that contradicts with the fact that we alrehdye
L optimal solution forEq;. Thus the assumption does not hold,
P the theorem gets proved. ]
T T T IR According toTheorem2, for the efficiency metric we only
------ L 1 e have to compute the optimized association solution each tim
on L T when one or more users cross the boundargqtiivalence
0 1 33 4 5 6 7 89 10 111213 L ClassesWe can further prevent unnecessary computations by
checking the special patterns of adjacEquivalence Classes

ieA
VieA,jeU 0<p;;(t)<1

Fig. 3. Time line for users to drive through tliuivalence Classes

Since we have obtained the optimized strategy for ass%‘— Offline Optimization for Proportional Fairness

ciation control over each snapshot, we need to consider thén the above subsection we have demonstrated that for
handoff strategy for efficiency. Continuously computing ththe efficiency metric we can transform the long-term overall
optimized association solution for each snapshot is defynit optimization into the snapshot optimization. However, for
not an appropriate solution, as it incurs too much computimpgoportional fairness, as each snapshot decision for thmap



solution may depend on its former and future situations, wee have the following non-linear program formulation:
cannot simply conduct this transformation. o

As illustrated in Fig. 3, within each refined time interval mzmmmzkj (14)
[t,_,,t,] for I = 1,..., L, the candidate AP sets and corre- jeu
sponding bit rates for all users are fixed. We can devise aSubject to
fixed pattern of association solution in an optimized apphoa
Following the offline setting described in Section IIl, and 7/ €U k; = DD max{0, @ (k +1) — @, (k)} (15)

K-1

using the detailed information over the time spéh7] _ , k=1 icA

given in advance, we devise an offline algorithm to achievé! € 4,7 € Usk € {1,... K} @i;(k) € {0, 1} (16)
optimization for proportional fairness. Here we ubg to VieUke{l,.. K} me(k) <1 a7)
denote the average bandW|dth allocated in the time interval i€A

[t_y.t,], and we define; = t) —#;_, for 1 = 1..,L. S0 vic A ke {1,..K} ni(k)= > i i(k) (18)
we haveB; = T%_Zle (bj1 - t1). Since the objective is to jeu

maximize ;. ;; w; In B;, we have

a(k
VieAjeU Z )) zi (k) = pi;(1) (19)
> w;nB; _Zw,anle t)— Y w;InTj. Vke{l LK} 0<a(k)<1 (20)
jeUu jeu jeu K
_ - > alk) =1 (21)
As —> . cyw;jInTj is constant, we can set the objective P

function as} . ;; w; (Y1, bj; - ;). Then we obtain the

following convex program formulation: Here the first constraint calculatés by comparing each

adjacent integral solutions for usgrduring the K phases. If
for userj there exists somée A for which z; (k) changes

mammwezwj In( Zbﬂl t) (9) from 0 to 1 in the next solutiony; ;(k + 1), it means thet
ieu a handoff happens for usgr The second constraint requires
subject to trr:at:ciyj(k) is an integlral solution. Thehthird constraint refquiresh
. that any user can only associate with one unique AP for eac
VieUle{l,..L} b= ZT” (1) pi; (1) (10) phase. The fourth constraint states thgtk) is the number of
iea users associated to APfor each phase. The fifth constraint
Vie Ale{l,.,L} Y pi(1)<1 (11) states that the overall time proportion for ARo associate to
jev userj should equal tg; ;(1). The sixth and seventh constraints
VjeUle{l,.. L} me(z) <1 (12) define the time proportion(k) for each phasé.
i€A To solve the optimization problem, we sé&f as a large
VieAjeUle{l,.,L} 0<p;;())<1 (13) number and calculate the seriesg;(1),z; ;(2),...., 2 ;(K)

and «(1), «(2), ...,«(K), and reduce the series by merging
The constraints (10)-(13) are coherent with those comgtrai those adjacent phases with equal, matrices. The drawback
depicted in (4)-(7), here we respectively useg(l) andp; ; (1) of this approach is that if we do not set a large enough value
to denote the bit rate and fraction of time used between Afr K, we may just get a “feasible” solution instead of an
user pair(i, j) in the time intervalt, ,,t,]. Since the objective “optimal” solution.
function is a convex function and the other constraints are _ _ ) )
all linear, we can solve this convex program in polynomidf- Online Algorithm for Proportional Fairness
time. The fractional solution op; ;() is the exact solution  From the above subsection we know that the exact optimal
for association control in théh interval fori = 1,.., L, as solution can only be achieved with information obtainedrove
we allow multiple handoffs within each interval to achiehet the whole time spar@()7T) in advance. However, in practice
fractional solution. Now we consider how to devise optindizewe cannot precisely know users’ future mobility trajectory
handoff strategies to achieve the optimized fractionaltsmh. thus no information about which users will be contending for
Assume within any time intervalt, |,t,], there areK specified APs in the future can be obtained beforehand. $n thi
phases of association control d€”;, ACs, ..., ACk. In each subsection, according to the online setting described atiGe
phaseACy, for k = 1,..., K, any user can associate with onell, we design an online algorithm. Our solution relies oe th
unique AP in the integral solution. We usg ; (k) to denote following theorem.
the integral association solution between A&nd userj, and Theorem 3: MaX|m|zmg the long-term objective function
a(k) to denote the time proportion used for phasdiere we Z cu wjIn(e + fo ;(t)dt) is consistent with maximizing
aim to minimize the overall number of handoffs as too marty]e long-term objec'uve functioﬁ)T S w; b; (t)dt.
handoffs will incur heavy delays and communication costs. jeu +f b (tydt 7
We usek; to denote the number of handoffs for ugerThus Here, fo t)dt denotes the accumulated bandwidth in time



span|0, t], w; denotes the original fixed weight as priority forAlgorithm 1 DWOA: Dynamic Weight based Online Algo-

each userj, ande > 0 is a small constant number. rithm
Proof Using the fact thafl” is constant and setting; = Lt= = 0
€+ fo t)dt, we have 2: while t < T do

3:  Stepl.For each usey, calculateW; (¢

= dt for snapshot at.
/ Z E + fo Z / €+ fo p

jeu 4:  Step2.For snapshot at, set the object function as to
T , maximize > ._,, W.(t)b;(t), calculate and apply the
0 0

e+f t)dt

T solution for association.
, b t)dt
jev ¢ +Tfo i(®) 5. Step3.t =t + At, go to Step 1.
e+ [ b1yt
= [ Py
, c Zj
e First, realizing the equivalance of its maximization to ttha
= ij 1na;]|5+f i (1) of 3= ey wjIn(B;), we use[];;(B;)"7 as the objective
s function in the definition ofR. Then S|m|Iar to the approach
used in [6], we define
=> w;ln(e +/ bi(t)dt) = > wilne.  (22)
JEU JEU R—lnll:[[JGUi ijlnB —ijlnB
As ¢ is constant, maximizing (22) is equivalent to maximizing JEU Jjeu jeu
Here B and B; respectively denotes the overall optimal
Z w; In(e +/ bj(t)dt). (23)  solution and the online solution. According to the definitio
jev of B;, we can further obtain
The theorem gets proved. ]
Recall that the original long-term goal is to maximize R— Z wj ln/ b (t)dt — Z wj ln/ by (¢)dt.
: 0
3 w; In( / (t)dt). (24) Iey Iey
jeu Theorem 4:The upper pound ofR = ZjeU wjIn B} —
The only difference between the above two objective fumstio 2jcu @; In Bj for DWOA is
(23) and (24) is¢, which may have an impact on the corre- erme n
sponding optimal solution. However, as long as weesarhall Z wj - T T ;),
enough ¢ — 0) in (23), the Iong -term goal in (23) becomes jeu S min
ver near tct)z@ s mffo f)dt). i, P = e Do = mingeo (1), Toe =
n order to maximizefo = — b, , j
© fo iU ¢ f b (t)dt i max;er (T}), Tmin 1S the minimum value of bit rate, angl, .
we use the following heuristic snapshot objectif§ = is the maximum value of bit rate.
2jev —2——b;(t) along with the constraint depicted in  Proof: Since DWOA attempts to maximize

b (t)dt . ]
(4)-(8) to “approximate the long-term optimization solatio >_jev wjIn(e + fo j(t)dt), we first define R(e) =
The intuition is that maximizingf;, at eacht contributes to >, ;; w; In(e + fo bi(t)dt) — 32 ey wjIn(e + fOT bi(t)dt).
the maximization offo. We thus propose an online algorithmWe then have
DWOA based d i 'h-t:twij.
ased on dynamic weightV;(t) T b €+foT ;
R(e) = > wjln(—=%——).

Since it is possible tha{0 t)dt = 0, we lete > 0 to
preventW;(t) from equal to+oo This online algorithm is
illustrated in Algorithm 1. Here Step 1 takes care of thgs f b* < Tomar * Tmae and foT b(t)dt >
fairness metric by settingV;(¢) inversely proportional to mmJeU(fTb ( )dt), we have

the accumulated bandwidth. Step 2 considers the efficiency

metric by attempting to maximize the sum of the weighted R(e) < Zw" n €+ Tinax * Tmax _
bandwidths. We update the association solution for evety - s / € + minjey fo ;(t)dt)

time interval. Conventionally the les&t we use, the better

solution we can obtain, but the drawback is that it may caus@en according to the definitions éf and R(¢), we have
too many handoffs.

. t)dt) + dt
D. Performance Analysis of DWOA Z w; In b (1) (e fo ))
Due to the mathematical complexity of our objective func- jeu (€ + fo b3 ( ’ fo ;(t
tion >,y wjln(B;), we take the following steps to de- < ij In(— € n 1)'

fine a metric R to evaluate our online algorithm DWOA. jeu o bi(t)dt



n-mingcy wj

Therefore we obtain Then according to Eq. (25), if we set= —, we
have e
R< Z wj In(— ET + 1)+ R(e)
Jjeu minjey fo j )dt) R < Z ws - €+ Tmamea;E ]
’ - 1)€+prm1nTmzn/n
- Z | (e + minjey fo (t)dt) jeu
~ w; - In . . o .
= J minjecy jo i(t)dt) Here sincee is an adjustable parameter, it is possible to
€+ Toow * Tras determine an optimal value farto minimize the bound. As
+ Z w; - In( ) p <1, whene — 0, we can achieve the minimum value for
jev €+ minjeu (f; by (t)dt) R's upper bound a§;;; w; - In(fuecqma . 2), n
- Z € + Tmaz * T'maz For the optimal squtrorB* and the online solutrorBJ, we
= wj - In (25) J
= minjep fo i )dt) respectively denote the results of objective functlorf@sB )

and fo(B;). We defineD = fmesfmaes . 1 According to

TminTmin
Now we need to estimatein;cy (f, b;(t)dt) in Eq. (25). Theorem4 we have

We consider the worst case that all users are driving in a very Z wj -In B — Z w;-InD < Z w; -In B
close neighborhood, and so they are always contending éor th
same APs. We assume for theusersw; > wg > ... > wy,. ) )
According to the algorithm, for the optimal snapshot solnfi SO We havefo(Bj/D) < fo(B;), implying that the total
each AP will only allocate bandwidth to the user with thatility of the bandwidth allocation vectoE given by DWOA
largest weightiV/;(¢) within its range. AsW;(t) is changing is greater than that of the optimal bandwidth allocationteec
all the time, we adopt the following procedure user 1 firdg* scaled down by a factor ab. Since D = Lmesfmar . 1,
get all the bandwidth from the AP untili;(t) = Wa(t), by achieving the smaller value gaps fOr.in; maz) and
then user 1 and 2 will further get bandwidth uriiil, (t) = (Tmin, Tmaz), as well as the smaller value of, better
Wy (t) = W(t), ..., finally we can achievéV, (t) = Wy(t) = performance can be obtained by DWOA.

.. = W,(t). From then on, all users will share the bandwidth
distribution and keepV;(t) = Wa(t) = ... = W, (¢), in this
way each usej further gets the bandwidth from the AP with The above proposed snapshot solution as well as the online
proportion . In order to obtainmin,cg( J"O ;i ()dt), algorithm solution both require continuously solving aetm
program for each snapshot. The computation complexity may
be huge in our considered scenario, where we have to deal
with an extremely large Wi-Fi deployment. For example,
according to polynomial-time algorithms for linear progra
like the ellipsoid method[18], the computation complexgy

? (N*.L), whereN is the number of parameters afds the
ength of encodmg bits for parameters. For our optimizatio
problems, we haveV = m - n for all parameters; ;, (m

is the number of APs and is the number of users). Thus,

JjeU Jjeu Jjeu

V. GROUP-BASED APPROACH

we further assume that user has the minimum service
durationT,, = minjcy (7}), thus among all userg € U
usern obtains the least bandW|th
We denote the time intervgD, t*] during which usern
gets no bandwidth an@t*,T;,] during which usem shares
the AP’s bandwidth distribution. Thus durlng the mterv
[O t*], the total downloaded bits for uset,. —1is
fo i (t)dt. As the minimum bit rate ISTmm, we

obtarn t* < nj? fo ;(t)dt. At the time pointt*, as if n andm are large enoughy will be a huge number and
Wi(t*) = W =" =Wt ) according to the definition the computation complexity will be tremendous. Hereby we
of W;(t), we have propose a group-based approach that partitions the network
w. w into groups. In each group, we apply the aforementioned LP
Vi=12.,n-1 —Fxl——=-", method so that the computation complexity will be reduced.
€+ fo b;(t)dt € In the rest of this section, as we only focus on the snapshot
. solution, for the ease of presentation, we omit tlig™ for
Thus we getf; b;(t)dt = (Z—i — 1)¢, and further more snapshot parameters in the formulas. Next, we give a formal
definition of “group'’.
< Z w; —n) (26) Definition 1. We say that a set of users belong to the same
rmm wn ieu group if and only if for any two userg’ andj from the set,

there is a series of users, jo, ..., js from the set such that
Now according to Eq. (26) we can estimate the minimur)zlj, NAj, # o6, A, NAj, # ¢,.... Aj. A; # ¢, where A;

accumulated bandwidth among the users is userj’s candidate AP set.
- According to this definition, different groups aneutually
Inin(/ b (t)dt) > (T, — t*) - WnTmin exclusive(each user can 0r1|y belo_ng to one unique group) and
jevu ZJEU wj independenfusers belonging to different groups will have no
Wn Tmin Wnp - 1 shared candidate APs for contention). For any snapshot, the
> —min(7j) + (=—— — 1)e.

- ZJEU w; jEU J ZJEU w; users over the roads can be divided into one or more groups.



Therefore our association control over all users is reddoedAlgorithm 2 Breaking a Large Group into Smaller sub-groups
association control within each group inferred Blyeorem5.  1: for each useyr within groupG do
Theorem 5:For snapshot solution of the efficiency metric 22 Find the maximumr; ; as R; for user j from its

and online solution of the fairness metric, the optimizatio candidate AP se#;
achieved within each group is consistent with the overalB: for each APi within j’s candidate AP setl; do
optimization. 4: if rv; <pB;-R; then

Due to lack of space, we omit the proof heorem5. 5: Delete edgdi’, j).

As we have learned from Section 1V, both snapshot solutiors: Check the bipartite grap&(V, E) of groupG.
for efficiency and online solution for fairness can be unified?: if G(V, E) is disconnectedthen
in the formulation as to maximiz&_,_,, W; - b; for each & Break G into subgroupGi, Ga, ..., Gy, according to
snapshot. Here for efficiency, we haWSJ = wJ/T and for graphG(V, E).
proportional fairness, we hawd; = —~1— 9: Output:Gy, Go, ..., Gy.

e+ fo ;(t)dt”
A. Breaking into Smaller Sub-Groups

In a dense traffic scenario, the distance between adjac@fproximate solution. In the following we give an upper bbun
users may be close to share some candidate APs, thusf@ethis approximation ratio.
cannot divide them into separate groups. Hence we may stillFor any userj, we denoteA; as its original candidate AP
have extremely large-sizegtoupsover the roads. In order to S€t, andS; as a subset of4; for the remaining candidate
reduce the computation complexity, we need to break thelafjP set after the weak link elimination. Thus; — S; is the
groups into smaller sub-groups. Therefore before we cand$€t of those eliminated candidate APs. We respectivelizetil
optimization with the linear program based method, we firgatrix p; ; andp; ; to denote the optimized parameters for the
perform pre-processing. For each ugewe delete those weak Original solution and the approximate solution. Then adzy
links (i, j) with bit rater; ; low enough to satisfy, ; < to the definition we have

Bj-max;ca, ri;. Here,max;e 4, r; ; is the maximum bit rate , S o o
that userj can achieve within its candidate AP séf, and bj = Z Tig Pig = Z Tig Pig T Z rig - Pij (28)

’iGA]‘ ’iGSj ’L‘GAj*Sj
civ If ¢ >
5 ={ ver e - 27) / / /
’ b= rigpig= D rij Py (29)
wherei* is the specific AP with the maximum bit rate, is i€A; i€s;

the number of users within AP’s effective range, andg > 1
is a constant parameter. When= 1, the intuition is that
from userj’s perspective, even choosingas its own AP with
no contention is worse than contending f6rwith ¢;« users,
so it is too weak to worth association. We use the const
parametery to control the effect for weak link eliminations.
Actually the largery is, the greater number of links will be y
deleted. Thus we are able to break a large group into mc&g
sub-groups. After deleting these weak links, we check the
blpartl_te graphG(V, ) of AP-user links corresponding to, ,; 1o pi . so as to further increase the objective function
the original large group. Her® denotes the set of users and=’ jJ W ipis, which at least can remain the same
APs, andE denotes links after weak link eliminations. If th JGGH. Sy T l_lih fore the obiective function of th
graph is disconnected somewhere due to the effect of wea?fﬂse Ngp;,; = pi,j- INeTelore the objective function of the

imal solution should be equal to or larger than the pnm/io
link elimination, we will obtain new sub-groups. Algorithin one, ey 3 W,r IS Wr
illustrates the detailed procedure. JEG £4i€5; LiPL) = 2ujeG 2uies; i3l

L . . The lemma gets proved ]
B. Approximation Ratio Analysis Theorem 6:For the snapshot solution of the weight based

Assume that for any userin the original optimized solution objective function, the upper bound of the approximatidiora
without edge removal, we have bandwidthfor the fractional for group breaking i9+~, wheref is the approximation ratio
solution andb}- for the integral solution; and similarly in thefor the rounding algorithm in Shmoy and Tardos[17].
approximate solution with edge removal, we have bandwidth Proof: According to Eq. (28) and Eq. (29),

b; for the fractional solution and’ for the integral solution.

For both the efficiency and falrness metrics, we define t Wjb; = Z Z Wirij - pij + Z Z Wirij - pij-
j€eG WJ b/

We have the property ihemmal.

Lemma 1:For optimal parameterg; ; in setS; for the
original solution and optimal parameters ; in set S;
for the approximate solutiony_ . > ics. Wirijpij <

jec 2ies; Wiriipi ;-

Proof: After removing some weak links, thoge ; with
¢ S, corresponding to the weak links are set to O.
nsequently some constraints for the remaining with
1% S get relaxed. We can then add a slack value to adjust

j€G JEGiES; JEGi€A;—S;

approximation ratio a _. Apparently the ratio is at

least 1asy, . W, - b; > 3, W - b, since the candidate STwin =3 Wiri; vl
link set for the or|g|nal solutlon is a superset of the one for jec jeGies,



According to Lemma 1, least one AP, and that their peak bit rates range from 1069kpb

W < W ;o Wb to 3500kbps for vehicular users. In our simulation, we sateil
Z Z iTijPig = Z Z iiPig = Z A a total of 100 users driving over these roads with speed tange

jeqies; jeqies; jea from 40km/h to 100km/h, and utilize Boisson Proceswith
Then parameter) to simulate the series of vehicular users within
time span[0h, 10h]. On average, every0/\ second a new
b < b I . . .
;WJbJ - _GZGWJbJ + ; _GAX:S Wirij - Pi; user will drive into this region. Among these multiple roads
J J J ? 35

o _ . each user randomly selects the trajectory to drive throhgh t
Thus by the definition of weak linki, j) with i € A; —S;, region. We solve the linear program and convex program using

we haver; ; < ;- Rj, whereR; = max;ca; r; j. Then MATLAB.
/
SOWib; < S Wb+ > (BiRW - Y piy). 20— N ,
JjeG JjeG JjeG 1€A;—S; —+— Connect Until Broken —+—Connect Until Broken

n
=}
S

—o&— Strongest Signal First
—— Integral Optimal Solution

o
=]
S

—e— Strongest Signal First
—a—Online Algorithm Solution

Since) e, s, piy < 1, then

D Wby <> Wb+ > WiBR;.

IS
S
S

150

100

Total Throughput (GBits)

Throughput for Each User (kbit/s)
8
3
o
)
o
|
|
b
|
kN
X
\
&
t\\

jeG jeG jea w0 e
=R 50 g p—=e < /
As we have} ;o W; bj < 3 ,.cW; b; because the == e
fractional optimal solution can always achieve a betteultes %~ 2 Gy f %2 S @
B N . Time Span (hour] User Index
than the integral optimal solution, then @) (b)
ZjGG’ Wj-bj < ZjEG Wj'bj < ZjGG Wijj+Zj€G Wj'ﬁj'Rj
Z W, Z w,b, Z Wb ’ Fig. 4. Performance comparison for (a) efficiency and (b)pprtional
JjEG J Jj€G J i€G J fairness

/

o ZjEG Wj'bj . . .
We setd = =’“—— to be the approximation ratio for theA' Efficiency and Faimess

Wb
. jeg I
rounding algorithms proposed by Shmoy and Tardos[17], andin Fig. 4(a) and Fig. 4(b) we respectively evaluate perfor-

1 <6 <2. So, mance of our optimal strategies for efficiency and fairness.
ZjeG W, - b, Zjec W, - 2L - R, We compare performance. with two heur|st|c_: strat§g|e_s. The

: = < = first strategy i<Connect Until Broken (CUBWwhich maintains
ZjeG W 'bj ZjeG Wi - bj a connection with a user and an AP until the user considers

After the weak link elimination, the optimal integral sabrt  the link to be broken. Upon disconnection, the user will be
may come with a worst case, where a bunch of users share gigociated with a new AP which yields the largest signal
one candidate AP which has the largest bit rate for any of thefi'ength. The second strategyStongest Signal First (SSF)
with the other candidate APs all eliminated. Then the optimyhich always associates a user with the AP yielding the
method for each usef is to select the unique AP wittk;, Strongest received signal strength at all times. Fig. 4{ajvs
which is the largest; ; for j. Thus we have™._ . W, - 22 the result for the efficiency metric, where the X axis is the
’ JEGT I Gt time span as users are driving over the roads and the Y

1 .. / - . . - .
as the lower bound for the optimal res@jec W; bJ‘ So, axis is the users’ total received data measured in GBits. For

e Wi - b; YieaWi 2 R, the ease of comparison, we sef = 1 and7; = 1h for
= < % <O+~ each user, so comparing the total received bits is equal to
ZjeG Wj - b ZjeG Wj - Cor comparing the overall throughput. We observe that the rateg

Therefore we obtain the approximation ratio @st ~, ©Ptimal solution outperforms both th@SF solution and the
where~ is a constant. This indicates we can well control theUB solution. TheSSFsolution achieves about 70% of the
approximation ratio by adjusting. m total throughput of the integral optimal solution, whileeth

CUB solution always performs worst for it only reaches 38%
VI. PERFORMANCEEVALUATIONS of the total throughput in comparison with the integral oyl

We have implemented a simulator to simulate the Drivesolution. Fig. 4(b) shows the result for the proportionatfass
thru Internet scenario over a Wi-Fi deployed square regionetric, where the X axis is the user index and the Y axis
(20km x 20km) covered with 10 roads. Among them 5 roads users’ throughput in Kbps. The users are sorted by their
are along the east-west direction and 5 roads are along theoughput in increasing order. For the ease of comparison,
north-west direction, thus forming x 5 intersections within we setw; = 1 for each user. For the online algorithm we set
the square region. We randomly place a total of 2000 ARs= 0.01 and every 5 second we recalculate the association
over these roads and adopt the experiment results from [2]smlution. We observe that although the two heuristics have
simulate effective bit rates of APs. We make sure that at asymilar growth trend as our optimal solutions, and that both
location of the roads the user is within effective range of #be offline optimal solution and online solution outperfaime



two heuristic solutions for overall throughput. For instan We observe that it is much smaller than the worst case ratio
the median user’s bandwidth value of the online algorithth+ ~, which demonstrates for conventional cases we achieve
solution is 69% higher than tHeéSFsolution and 300% higher tight bound for the expected approximation ratio.

than theCUB solution. The offline optimal solution has better
performance than the online solution, since the medianauser VII. ConcLusioN

bandwidth value of the former is 12.9% higher than the latter In this paper, we conduct a theoretical research on associa-
tion control over théDrive-thru Internetscenario. We consider

! e both efficiency and fairness metrics, and present correipgn
gos i offine and online solutions to achieve overall optimizatio
g E / objectives. We further propose an approximation algoritom
5 R group breaking in order to reduce computation complexity.
g” :é Simulation results confirm the performance of our optimized
§o2 algorithms for association control.
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