[image: image1.png]Solutions to Quiz 1

({Points for a problem are generally equally divided among problem parts.
Answers needn't be as complete as here; we give liberal partial credit for
showing understanding of ideas.))

Problem 1 (20 points]

Give asymptotically tight upper (big O) bounds for T(n) in each of the fol-
lowing recurrences. Justify your solutions by neming the particular case of
the master theorem, by iterating the recurrence, or by using the substitution
method.

A T(m)=T(r-2)+1
Answer: T(n) = O(n)
by iteration
O(n) terms

T(n)=T+1+--+1=0(n)
T(n) = 2T(n/2) +nlg*n.
Answer: T(n) = O(nlgn) (or ©(nlg*n))
by master theorem, case 2 (as generalized in Exercise 4.4-2).
€. T(n) = 9T (n/4) + 7.

Answer: T(n) = O(n?) (or ©(n?))

by master theorem, case 3.
d.T(n) = 3T(n/2) +n.
Answer: T(n) = O(n®8:) (o ©(n':2))
by master theorem, case 1.
T(n) = T(n/2+ VA) +n.
Answer: T(n) =0(n)
by substitution.

(To make the guess, notice that when is large, n/2 + /i s close to n/2,
50 O(n) is a reasonable guess, based on master theorem case 3.)

Show T(n) < cn by induction:

7

®

+ nitially true (for small n) if c large enough.
((Note that you actually have to assume T is constant for 7 < 4, since
T(4) =T(4/2+ VI +4=T(4) +4.))

+ Assume true for numbers < n. Then
T(n) = T(n/2+ VA) +n < cn/2+ oy +n

With a little algebra, can see that this is < cn for large enough n and c
(eg c=4,n>16)

[image: image2.png]Problem 2 [20 points]

Consider the code for BUILD-HEAP, which operates on a heap stored in an
array AlL..n]:

BuiLD-HEAP(4)

1 heap-sizelA] — length]A]

2 for i «— |length[4]/2] downto 1

3 do HEAPIFY(4, i)

a. Show how this procedure can be implemented as a recursive divide-and-
conquer procedure BUILD-HEAP(4,), where Ali] is the root of the subheap

to be built. To build the entire heap, we would call BuiLD-HEAP(4, 1)
Answer:
BUILD-HEAP(4,1)

If i < length[4]/2] b or i < length[4]

then BuILD-HEAR(4, %)
Buito-HEAP(4, 2 +1)
HEAPIFY(4, i)

b. Give & recurrence that describes the worst-case running time of your pro-
cedure.
Answer: T(n) = 2T(n/2) + O(gn)

. Solve the recurrence using the master method (or otherwise for partial
credit).

Answer: T(n) = ©(n) by case 1 of master theorem

[image: image3.png]Problem 3 [20 points]
Give a short answer for each problem below. The more concise and precise
your answer, the more points you will receive.
a. Prove that (n +1)? = O(n?) by giving the constants no and c in the
definition of O-notation. Justify your answer.
Answer: c=2,np=3
Need (n+1)? < cn? for all n > n,
(n+1)? < 202 if 2n + 1 < n?, which is true for n > 3.

b- Suppose that you want to sort n numbers, each of which is either 0 or 1.
Briefiy describe an asymptotically efficient algorithm for this problem
What is its running time?

Answer: Counting sort, O(n) time (actually, O(r))
Or partition around any element,

. Briefly describe what we mean by a randomized algorithm, and name
two examples.

Answer: Behavior determined in part by random-number generator.
Eg

randomized quicksort (Section 8.3)

randomized select (Section 10.2)

skip lists (Lecture 10)

universal hashing (Section 12.3.3)

randomized partition (Section 8.3)

d. Consider a priority queue that supports the operations INSERT and EXTRACT-
Mix. Argue that in the worst case, if we perform a mixture of n INSERT
and EXTRACT-MIN operations on the priority queue, there s at least one
operation that takes Q(lgn) time. Assume that the order of elements in

the priority queue is determined by comperisons only. (Hint: For any set
of numbers, at least one number must equal or exceed the average.)

Answer: Can sort n/2 numbers by doing /2 INSERTs and n/2 EXTRACT-
Mixs (n operations all together).
But comparison sorts take 2(nlgn) time, in this case

2 (33) - toen

‘The everage time for this set of n operations (and hence for the worst-case
mix of n operations) is thus 2(lgn), so at least one takes 2(Ig) time.

