1. (20%) For the following weighted, directed graph

- run FASTER-ALL-PARIS-SHORTEST-PATHS algorithm.
- run FLOYD-WARSHELL algorithm.
(question 1, continued)
2. (20%)

- Modify the EXTEND-SHORTEST-PATHS and SLOW-ALL-PAIRS-SHORTEST-PATHS to calculate the transitive closure of a graph.
- Find the transitive closure of the following graph using the modified algorithm. Show all the steps.

![Graph Diagram]

iii
(question 2, continued)
3. (25%) Apply the Ford-Fulkerson method to the following network. Show residual networks, augmenting paths, final cut, and total flow. The following two searching algorithms are used. The priority orders of nodes are r, s, t, u, and v.

- Depth-first search
- Breadth-first search
(question 3, continued)
4. (15%) Suppose $\Sigma = \{a, b\}$, build an automaton A that accepts those strings that end in ab and have even number of occurrences of ab. For example, A accepts $aabababaab$, $abab$, and $aaabbab$, but rejects $aababab$, $ababa$, and $ababb$.
5. (20%)

- Compute the prefix function π for the pattern $ababa$ when the alphabet is $\Sigma = \{a, b\}$.

- Use Knuth-Morris-Pratt algorithm to detect pattern $P = ababa$ in string $ababbababababa$. Show all the necessary shifts.
(question 5, continued)