Summary

• **Analysis Techniques**
 1. Asymptotic Analysis
 \((\Theta, \Omega, O, \omega, \text{ and } o \text{ notations, recurrences and summations}) \)
 2. Amortized Analysis
 (aggregate, accounting, and potential)
 3. Adversary Arguments
 (better lower bounds)

• **Data Structure**
 1. Heap
 2. Hash table, List, Stack, Queue, Tree, and Graph

• **Basic Design**
 1. Sorting
 \((\Theta(n \log n) \text{ algorithms, } \Theta(n) \text{ algorithms, lower bound, sorting networks}) \)

• **Advanced Design**
 1. Dynamic Programming
 2. Greedy Algorithms
 3. Randomized Algorithms
 4. Approximation Algorithms

• **Bonus Problems**
 1. Marriage Problems
 (stable marriage, seating problems, and mate-selection problems)
 2. Special numbers:
 (a) \(\phi \) (Fibonacci number and golden-ratio)
 (b) \(\pi \) (randomized algorithm)
 (c) \(e \) (compound interest rate and harmonic series)
Other Topics (not covered)

- Design
 1. Graph Algorithms
 2. Combinatoric Algorithms
 3. DNA Algorithms
 4. Genetic Programming (Algorithms)
 5. Others

- Data Structures
 1. B-Trees
 2. Binomial Heaps
 3. Fibonacci Heaps
 4. Others