1. (20%) (Greedy) A telecom company needs to install base stations to cover all houses along a long road. These houses can be sparsely distributed along the road. Suppose the coverage of each base station is 5 miles. Design an optimal solution that covers all houses using as few base stations as possible. Prove that your algorithm is optimal.

2. (20%) (Linear programming) Solve the following linear program using SIMPLEX and show all the relevant steps:

 maximize $x_1 + 2x_2$

 subject to

 $4x_1 - x_2 \leq 9$
 $x_1 + x_2 \leq 8$
 $5x_1 - 2x_2 \geq -3$
 $x_1, x_2 \geq 0$

 Provide a geometric explanation of the solution by plotting the corresponding feasible region in a 2-D space.

3. (20%) (Divide-and-conquer) Suppose the only way to access a database of student GPA is through a simple query k and that the system returns the k^{th} smallest value that it contains. Design an algorithm that finds the median GPA from two separate databases A (with m values) and B (with n values) using at most $\Theta(\log(m + n))$ queries. Show explicitly how your solution meets the requirement. Note that the median GPA is the $\lceil (m + n)/2 \rceil^{th}$ smallest value in A and B.

4. (20%) (Brute-force) Let $G = (V, E)$ be a k-nary tree with n nodes. The distance between two nodes in G is the length of the path connecting these two nodes (neighbors have distance 1). The diameter of G is the maximal distance over all pairs of nodes. Design a linear-time solution (i.e. $\Theta(n)$) to find the diameter of G.

5. (20%) (Dynamic programming) Design an optimal solution using dynamic programming for the general coin changing problem. Let a coin of denomination i, $1 \leq i \leq n$, have value d_i. Use the example with three coins with values 1, 4, and 6 units to illustrate the correctness of your solution by showing optimal results for changes from 1 to 10.

6. (Bonus: 20%) Quicksort can be modified to find the k^{th} smallest element from n elements so that in most cases it does much less work than is needed to sort the set completely.

 (a) Write a modified quicksort algorithm for this purpose.
 (b) Show that when this algorithm is used to find the median, the worst case is $\Theta(n^2)$.
 (c) Develop a recurrence equation for the average running time of this algorithm.
 (d) Analyze the average running time of the algorithm. What is the asymptotic order?