-2-

RELATIONAL ALGEBRA FOR MICROSFT SQL SERVER
RelationalAlgebraForMSS.doc

© Martin K. Solomon, 2011

The Relational Algebra (RA) is a language for representing relations (i.e., a relational query language) via relational algebra expressions. A relational algebra expression is defined recursively as either a named relation in the database (such as S, P, J, SPJ) or as being built from relational algebra expressions using the operations: UNION, MINUS, CARTESIAN PRODUCT (TIMES), RESTRICT, PROJECTION, JOIN. For UNION, INTERSECT, and MINUS the operands R and S must represent union compatible relations (i.e., have the same number of fields, with the ith field of one relation being type compatible with the ith field of the other relation, for all i).

We now define the above mentioned relational algebra operations (let R, S, R1, ..., Rn be relational algebra expressions):

(1) UNION
 R UNION S = {x| x  R or x  S}
(2) INTERSECT
 R INTERSECT S = {x| x  R and x  S}
(3) MINUS
 R MINUS S = {x | x  R but x not in S}

(4) CARTESIAN PRODUCT
 R1 TIMES R2 TIMES ... TIMES Rn = {x| x is a record built

 from the n specified relations by combining a record from R1

 with a record from R2 ... with a record from Rn}.

 A field of R1 TIMES R2 TIMES ... TIMES Rn that comes from Ri

 (and is named fieldname in Ri) is named Ri.fieldname in R1

 TIMES R2 TIMES ... TIMES Rn. Note that we can assign an

 alias to an Ri the same way as in a SQL tables-list (i.e., by

 following the Ri with the alias name). For example: S SY

 TIMES SPJ. But please note that you are better off using column

 aliases instead of table aliases for times operands (as in

 example 12 below).

(5) RESTRICT
 REST(R) WHERE condition = {x| x  R and x satisfies

 condition}, such that condition is conjunction of

 clauses of the form field OP constant, field1 OP field2,

 using the Boolean operator AND (where OP = <, <=,

 >, >= <>, =, and field, field1, field2 are fields in R).

(6) JOIN
 R1 JOIN R2 JOIN R3 JOIN ... JOIN Rn WHERE condition =

 REST(R1 TIMES R2 TIMES ... TIMES Rn) WHERE condition, such

 that condition is as in (5).

(7) PROJECTION
 (field-list):R = set of records obtained by omitting from

 the records in R all those fields that are not in the field-

 list (of course, field-list only contains fields in R).

NOTES: (1) The field names in R UNION S, R INTERSECT S, R MINUS

 S, and REST(R) WHERE condition are the same as the

 field names in R.

 (2) Aliasing is allowed in the JOIN just as it is in the

 CARTESIAN PRODUCT.

 (3) The PROJECTION operation has higher priority than

 the other operations.

EXAMPLES

(using S, P, J, SPJ database from C.J Date,

An Introduction to Database Systems (2004))

(1) Print P# of all red parts.
 (P#): REST(P) WHERE COLOR = 'Red'

(2) Print S#s of suppliers who supply a part in common

 with a supplier who supplies a red part.

 (SPJX.S#): (SPJ SPJX JOIN SPJ SPJY JOIN SPJ SPJZ JOIN P

 WHERE P.COLOR='Red' AND SPJX.P# = SPJY.P#

 AND SPJY.S# = SPJZ.S# AND SPJZ.P# = P.P#)

(3) Print J#s of projects that do not get a red part from

 a London supplier.

 (J#): J MINUS (SPJ.J#): (SPJ JOIN P JOIN S WHERE

 P.COLOR = 'Red' AND

 S.CITY = 'London' AND

 SPJ.P# = P.P# AND SPJ.S# = S.S#)

(4) Print J#s of projects supplied entirely by S1.

 (J#): SPJ MINUS (J#): REST(SPJ) WHERE S# <> 'S1'

(5) Print the cities that appear either in the S, P, or J

 table.

 (CITY): S UNION (CITY): P UNION (CITY): J

Universal quantification queries can be done in the RA using the "double negation" method, with nested MINUS expressions. However, Codd's division operation, which he explicitly introduced into the RA to handle such universal quantification queries, is much better for this purpose.

DIVISION (DIVIDEBY)

Let R have fields X1, ..., Xn, Y1, ..., Ym and S have fields

Y1, ..., Ym then R DIVIDEBY S is a relations with fields X1, ..., Xn such that R DIVIDEBY S = {x| x is a record with field values x1, ..., xn where  y1, ..., ym [(x1, ..., xn, y1, ..., ym)  R]}.
Less formally, if R has fields X1, ..., Xn, Y1, ..., Ym and S has fields Y1, ..., Ym then R DIVIDEBY S is a relation with fields X1, ..., Xn such that (x1, ..., xn) is in R DIVIDEBY S if and only if (x1, ..., xn) is "matched up" in R with every record

(y1, ..., ym) from S.

EXAMPLES

(6) Print S#s of suppliers who supply all parts.
 (S#, P#): SPJ DIVIDEBY (P#): P

(7) Print P#s of parts supplied to all London projects.

 (P#, J#): SPJ DIVIDEBY (J#): REST(J) WHERE CITY = 'London'

(8) Print S#s for suppliers who ship the same part to all

 projects.

 (S#): ((S#, P#, J#): SPJ DIVIDEBY (J#): J)

(9) Print J#s of projects supplied with all parts

 available from S1.

 (J#, P#): SPJ DIVIDEBY (P#): REST(SPJ) WHERE S# = 'S1'

(10) Print S#s of suppliers who supply all parts to all projects.

 (S#, P#, J#): SPJ DIVIDEBY ((P#): P TIMES (J#): J);

(11) Print S#s of suppliers who supply all parts that are

 supplied to all projects.

 (S#, P#): SPJ DIVIDEBY ((P#, J#): SPJ DIVIDEBY (J#): J)

(12) Problem (2) redone as a restriction of a Cartesian product.

(snumx):rest((

((S# snumx, P# pnumx):SPJ) times ((P# pnum, COLOR):P) times

((S# snumy, P# pnumy):SPJ) times((S# snumz, P# pnumz):SPJ;)

))

 where pnumx=pnumy and snumy=snumz and pnumz=pnum

 and color='Red'

(13) Problem (2) redone specifiying the color='Red' condition as part of a restriction instead of the join.

(SPJX.S#): (SPJ SPJX JOIN SPJ SPJY JOIN SPJ SPJZ JOIN

 (rest(P) WHERE P.COLOR='Red')PX

 where SPJX.P# = SPJY.P# AND SPJY.S# = SPJZ.S# AND

 SPJZ.P# = PX.P#)

EXECUTING A SCRIPT OF RELATIONAL ALGEBRA EXPRESSIONS

Then, to execute a script of semi-colon (;) separated of relational algebra expressions (possibly containing SQL style comments):

1. Create your script using Notepad.

2. Execute ramss on your script (say, myscript.txt):

ramss < myscript.txt > myscript.sql

3. Paste the contents of the above .sql file into a SQL script in Visual Studio, and run that script there, or run sqlcmd on that .sql file from the VS Command Prompt.

