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ABSTRACT
We provide a new derivation of the Lorentz transformations for tachyon inertial frames in two-dimensional space-time.  We consider our approach to be particularly revealing in that it provides in a very natural manner:

(1) The derivation, from the coordinate-free view of space-time, of the relationship  x2 - t2 = t'2 - x'2 (the pseudo-Euclidean Pythagorean theorem) between the space-time observations of observers with a hyperlight relative velocity.  This relationship is traditionally used as a starting point instead of being derived.

(2) A new explanation (in two-dimensional space-time) for the well-known time-reversal phenomenon for space-like intervals.

(3) The impossibility of consistently extending these transformations to higher dimensional Minkowski space-times.  In fact, our approach immediately reveals that such an extension is an attempt to pass space off as time.

(4) The geometric relationship between the pseudo-Euclidean Pythagorean theorem, the law of relativity of motion, and the Lorentz transformations.

Our approach also yields two possible (but opposing) metaphysical interpretations of the naturalness of tachyon inertial frames in two-dimensional space-time vs. their evident inconsistency with special relativity theory in higher dimensional space-time.  One interpretation supports Gödel's view that relativity theory implies that time is ideal.  The other is an interpretation that precludes space-time from being two-dimensional, and in which the ideal nature of time in two-dimensional space-time emphasizes by contrast the reality of time in our four-dimensional space-time.  Similarly, the ideal nature of time in Gödel's rotating universes can be taken to emphasize by contrast the reality of time in our universe.
Introduction

In this paper we give a new derivation of the Lorentz transformations relating the spatial and temporal measurements of inertial observers in two-dimensional space-time that have a (finite) hyperlight relative velocity, based on an axiomatic, geometric view of space-time (Weyl, 1952, 16-28, 173).

Although the space-time transformations we derive are the same ones given in (Parker 1969), we consider our approach to be more revealing, systematic and symmetric than the approach taken in (Parker 1969).  In particular, our approach yields in a very natural manner:

(1) The derivation in Proposition 2 (the pseudo-Euclidean Pythagorean theorem), from the coordinate-free view of space-time, of the relationship x2 - t2 = t'2 - x'2 between the space-time observations of observers with a hyperlight relative velocity.  (Parker assumes this relationship as his starting point.)

(2) A new explanation (in two-dimensional space-time) for the well-known time-reversal phenomenon of spatially-separated events.

(3) The impossibility of consistently extending these transformations to higher dimensional Minkowski space-times.  In fact, our approach immediately reveals that such an extension is an attempt to pass space off as time.  However, see (Antippa 1975) for what, according to our approach, is a misguided attempt to "force" such an extension.  

(4) The geometric relationship between the pseudo-Euclidean Pythagorean theorem (Proposition 2), the law of relativity of motion (Theorem 1), and the Lorentz transformations (Theorem 2). 

Note: Since our derivation method can yield the usual Lorentz transformations for sublight inertial frames, as well as handling the hyperlight case, advantages (1) and (4) carry over to that sublight derivation as well.

Our approach also yields two possible (but opposing) metaphysical interpretations of the naturalness of tachyon inertial frames in 2-dimensional space-time vs. their evident inconsistency with special relativity theory in higher dimensional space-time.  Specifically, if we, along with Kurt Gödel (Gödel 1946/9), (Gödel 1949), consider "possible worlds" that are consistent with relativity theory to constrain the nature of the "actual world" that we live in, then we can consider the naturalness of tachyon inertial frames in two-dimensional space-time to provide additional evidence for Gödel's view that time is ideal.  Indeed whether a space-time interval is space-like or time-like is observer dependent.

On the other hand, if we consider the metaphysical structure of the "actual world" to constrain what can be considered a "possible world", then we can consider our approach as precluding the possibility that space-time could be two-dimensional.  Similarly, Gödel's rotating universes, can be excluded as being possible solutions to Einstein's equations on metaphysical (instead of physical) grounds (Einstein queried (Einstein, 1949, 688), in his reply to (Gödel 1949), as to whether Gödel’s rotating universe solutions could be excluded on physical grounds), and the ideal nature of time in Gödel's rotating universes can be taken to emphasize by contrast the reality of time in our universe.

The Minkowski-Weyl Concept of Space-Time

     As in (Weyl, 1952, 173), we consider two-dimensional space-time to be a two-dimensional affine space together with an indefinite quadratic form.  We therefore start by defining the concepts "two-dimensional affine space" and "indefinite quadratic form".

Definition:  <S,V,M> is a two-dimensional affine space if:

(i)   S is a set representing the points in the space.

(ii)  V is a two-dimensional vector space over the reals representing the possible uniform motions or displacements in S.

                                                                                  
(iii)  M: S x S  onto> V (we write xy for M(x,y)), such that for all x,y,z  S,  xy = xz  => 


 y = z and xz = xy + yz.
M "attaches" vectors to pairs of points in S.  The attached vector represents the uniform motion required to "move" the first point into the second, i.e., the vector represents the affine "separation" of the two points.


The affine structure incorporates the notions of straight line, parallel straight lines, and comparison of distances along parallel straight lines (Weyl 1952).  The quadratic form concept generalizes the notion of length of a vector and therefore of distance between arbitrary points.

Definition:

(i)  A bilinear form  on a vector space V is a mapping B: V x V  R, where R = the set 

                                                                                                                                                                                            
of real numbers, which is linear in both its variables and symmetrical (B(X,Y) = B(Y,X), 

    
for all X, Y  V).
(ii)  A quadratic form is a mapping Q: V  R for which there exists a bilinear form B 

                                                    
such that Q(X) = B(X,X), for all X  V.  Q is indefinite if it is positive for some vectors and negative for others.

It can be shown (see (Weyl 1952)) that each quadratic form is "derived from" exactly one bilinear form. 

These definitions endow space-time with an objective structure independent of the subjective measurements of any particular inertial observer - where objective means viewed by every inertial observer (Weyl, 1949, 123-124).  Some aspects of this structure, with the affine or pseudo-Euclidean concepts that embody them, are given in the following Table 1.

Table 1:

SPACE-TIME CONCEPT


CORRESPONDING AFFINE OR PSEUDO-EUCLIDEAN CONCEPT


Set of locations where events can occur.


Set of points S.



Directed displacements separating events.
Vectors in V.

World-lines of inertial observers.
Straight lines in S.

World-lines of inertial observers at rest with respect to each other.
Parallel straight lines in S.

Inertial frames – i.e., systems used to take inertial observations.
Orthonormal coordinate systems – i.e., orthonormal bases in V attached to some point in S.

Subjective measurements of a particular inertial observer.
Coordinates determined by a particular orthonormal coordinate system.

Space-time distance between two events, i.e., the absolute value of the difference between the spatial separation of the two events and the spatial distance a light beam would have traveled if it has been fired from the space-time location of the first event, and allowed to travel for a time period equal to the temporal separation of these events.


        
|Q(X)|, where the two events are 

                                                                          
separated by the displacement X.

Notation:  Throughout the rest of this paper <S,V,M> and Q symbolize the affine space and quadratic form (arbitrarily) chosen to represent space-time.  As Weyl points out (Weyl, 1952, 28), the particular quadratic form and affine space so chosen are irrelevant; it is the underlying mathematical structure or concept that is important.

Relative Motion of Inertial Observers

In this section, we elaborate on the concept of an inertial frame.

                          
Definition:  Let X  V.  X is said to be negative (positive) if Q(X) < 0 (> 0).  A straight line L is said to be negative (positive) if a vector lying on L is negative (positive). 

                                                                                         
Note:  X lies on L if there exist a, b  L such that ab = X.

Definition: 

(i)  An inertial frame on a straight line L with origin o is an orthonormal coordinate                                                 
system attached to L, i.e., a triple I = <o,E1,E2> where o  L and E1,E2  V such that


       (a)  E1 lies on L,

                                               

       (b)  for all X = tE1 + xE2, Q(X) = e1t2 + e2x2 , where |e1| = |e2| = 1 and e1e2 = -1.

                                                                                                              
(ii)   p  S has time coordinate t and space coordinate x if op = tE1 + xE2.

(iii)  I is negative (positive) if L is negative (positive).

Proposition 1 (Law of Inertia):  If L is a straight line and o  L then there exists an inertial frame on L with origin o.

Proof:  See (Weyl 1952) for the pseudo-Euclidean orthonormalization procedure.

Note:  As we shall see in Corollary 1.1, allowing both positive and negative lines to have inertial frames defined on them provides us with inertial observers having hyperlight as well as sublight relative velocities.  This permissiveness is one difference between our development of special relativity and the one given in (Weyl 1952).  Another difference is our construction of coordinate systems on straight lines, which will allow us to give a geometric proof of the law of relativity of motion, a law that is usually assumed instead of proven in developments of special relativity theory.

Proposition 2 and the proof of Theorem 1 underlie the derivation of hyperlight Lorentz transformations in the proof of Theorem 2.  Thus, the Lorentz transformations can be viewed as being a consequence of the pseudo-Euclidean Pythagorean theorem and our geometric proof of the law of relativity of motion.

Proposition 2 (Pseudo-Euclidean Pythagorean Theorem):  If I is a negative (positive) inertial frame with origin o, and p  S has time and space coordinates t and x, 

                                                                                             
respectively, with respect to I, then Q(op) = x2 - t2 (t2 - x2).

Proof (for I negative):  Let B be the bilinear form for Q.  

                                                                                                    

Q(op) = Q(tE1 +xE2) = t2Q(E1) + 2xtB(E1,E2) + x2Q(E2) = x2-t2
                                                                                      

by the definition of inertial frame and the fact that Q(E1) < 0.

Proposition 2 indicates that |x2 - t2| is invariant among inertial observers.  By Corollary 1.1 (yet to come), the relative velocity of the observers determines whether x2 - t2 = x'2 - t'2 or x2 - t2 = t'2 - x'2.  Thus, in our development, the sign of a straight line won't preclude that straight line from representing the path of some inertial observer, but it will affect how the measurements of such an observer compare with the measurements of other inertial observers.

                                                                                                                                    
Theorem 1 (Law of Relativity of Motion):  Let I = <o,E1,E2> and I' = <o,E'1,E'2> be inertial frames defined on the straight lines L and L' respectively.  If L' has velocity (i.e., slope) v with respect to L, then L has velocity v' = -v with respect L'.  (Of course, both inertial observers see themselves as having velocity zero.)

Proof (for case v > 1):


Let E1' = aE1 + bE2
                      
E2' = cE1 + dE2
                           
E1' = a'E1' + b'E2'

                           
E1' = c'E1' + d'E2'

Now, v= b/a and v' = b'/a'.

                                                                            
So, E1 = a'(aE1 + bE2) + b'(cE1 + dE2).

                                                                       
Thus, (1 - a'a - b'c)E1 + (-a'b - b'd)E2 = 0. 

                            
Since E1 and E2 are linearly independent:

1 - a'a - b'c = 0                                                                                           [1]      

a'b + b'd     = 0                                                                                           [2]

                                                                                              
By the pseudo-Euclidean orthogonality of E1' and E2':

bd - ac = 0                                                                                                  [3]

From Equations [1], [2], and [3] we get:

a'b + (b'ac)/b = 0

or

c = -a'b2/(b'a) = 0                                                                                       [4]

Substituting Equation [4] in Equation [1]:

a - a'a2 + a'b2 = 0

or

a + a'(b2- a2) = 0                                                                                         [5]

Assume that I is negative.  (The proof of the case in which I is positive follows similarly.)  

                                                            
It follows from Proposition 2 that Q(E1') = b2 - a2.  Since v = b/a > 1, we have

b2 - a2 > 0                                                                                                   [6]

Since, by orthonormality, |b2 - a2| = 1, Equations [5] and [6] yield

a = -a'   
                                                                                                     [7]

Since I is negative, and since Equation [6] indicates that I' is positive, Proposition 2 yields a'2 - b'2 = -1.  So, b2 - a2 = b'2 - a'2 = b'2 - a2 , which implies that b2 = b'2.  It follows that |v| = |v'|.  Since L and L' are not parallel, we have v' = -v and

b' = b                                                                                                          [8]

Corollary 1.1:  Let I, I', v be as in the theorem.  |v| > 1 if and only if I, I' are opposite in sign.

Proof (ONLY IF):  Follows from the assumption following Equation [5], and from Equation [6], in the above proof.

(IF):  Obvious.

Lorentz Transformations for Inertial Observers

Having a Hyperlight Relative Velocity

Theorem 2 (Lorentz transformations for |v| > 1):  Let I, I' be as in Theorem 1.  Let I, I' view an event as occurring at a location p  S with coordinates t,x and t',x' respectively.

(i)  Assume the observer with frame I observes the "correct" temporal order of events on the world-line of I' (i.e., I observes the same temporal order of events on the world-line of I' which I' observes).  It follows that:

                  -x+vt    ,                                                        x'+vt'
         x' =    ____                                                     x =   ____

                 v2-1                                                            v2-1 

                  -t+vx    ,                                                        t'+vx'
         t' =     ____                                                    t =     ____

                 v2-1                                                            v2-1 

(ii)  If the assumption in (i) is false then:

                   x-vt    ,                                                          -x'-vt'
         x' =    ____                                                      x =   ____

                 v2-1                                                             v2-1 

                   t-vx    ,                                                         -t'-vx'
         t' =     ____                                                     t =    ____

                 v2-1                                                            v2-1 

Proof: Given in appendix.

We state Corollaries 2.1 and 2.2, without loss of generality, under the assumption in (i) of the theorem.
Corollary 2.1:  If p1,p2  L with time coordinates t1,t2 respectively with respect to I, and t1',t2' respectively with respect to I', then t1 < t2 if and only if t1' > t2'.

Corollary 2.1 indicates that if I sees the world-line of I' in the correct temporal order then I' see the world-line of I in the incorrect temporal order.

Corollary 2.2:  Let p1,p2  L with temporal separation t' in I', and p1',p2'  L' with temporal separation t in I.

                                                                                                         ____

(i)  ' = proper time of p1',p2' = time separation of p1',p2' in I' = v2-1 t.

                                                                                                      ____

(ii) t = proper time of p1,p2 = time separation of p1,p2 in I = v2-1 t'.

Corollary 2.3 (Law of Addition of Velocities):  Let w, w' be the velocities of a trajectory with respect to I, I' respectively, where I' has velocity v with respect to I.  It follows that w' = (w-v)/(1-wv), w = (w'+v)/(1+w'v).

Thus, the law of addition of velocities is the same for inertial observers having hyperlight relative velocities as for those with sublight relative velocities.

Corollary 2.4:  Let I, I', w, w', v be as in Corollary 2.3.
(i)  If |v| < 1 then |w| < 1 if and only if |w'| < 1.

(ii) If |v| > 1 then |w| < 1 if and only if |w'| > 1.

Corollary 2.4 implies that the property of a motion being hyperlight, and therefore of an interval being space-like, is a relative (i.e., observer-dependent) property.

                                                                                                        
Corollary 2.5:  Let I, I', v be as in the theorem.  Let I" = <o,E1",E2"> be an inertial frame with velocity 1/v < w < 1 with respect to I.  I" views the events on the world-line of I' in the temporal order opposite to that in which I views them.

Proof: Given in Appendix.

Since, by Proposition 1, given any two events there exists an inertial frame on the world-line "connecting" those events, the proof of corollary 2.5 given in the appendix indicates that the well-known time reversal phenomenon
 for space-like intervals can be viewed as a consequence of Corollary 2.1.  (This is the corollary which asserts that exactly one of any two inertial observers having a hyperlight relative velocity will observe the world-line of the other in the incorrect temporal order.)  From this logical relationship, it is apparent that the time reversal phenomenon does not involve a tachyon travelling backwards in time (as it is commonly interpreted), but as an observer incorrectly observing the events on the world-line of the tachyon in the wrong temporal order (i.e., as the tachyon being incorrectly observed as travelling backwards in time).

The Nonextendability of the Results to Inertial Observers in Space 

with Dimension Greater than One

Note that in this paper all inertial observers:

(i)   agree on which world lines represent uniform motions (i.e., they view the same affine space-time);

(ii)  consider themselves to be at rest and the other observers to be in motion;

(i) and (ii) constitute the principle of relativity of motion;

(iii) observe light as having the same constant velocity, i.e.,

 n                        n

|x2 - t2| = 0 iff  |x'2 - t'2| = 0 

i=1                     i=1

It is well known (see (Weyl 1952)) that (i) implies that the transformations relating the coordinates of inertial frames must be affine.  Therefore, since (ii) and (iii) clearly force the respective coordinates of inertial frames with a hyperlight relative velocity to satisfy the equation

 n                      n

 xi2 - t2 = t'2 -  xi'2 
i=1         i=1

the existence of such inertial frames would violate Sylvester's law of inertia (i.e., the invariance of the signature of a quadratic form, see (Weyl 1952)): no such affine transformations can exist.  Instead, it immediately follows by the pseudo-Euclidean Pythagorean theorem (Proposition 2) that the relationship between the coordinates in, say, three-dimensional space-time, is x2 + y2 - t2 = x'2 + t'2 - y'2, a clear attempt to meaninglessly pass time off as space.  In particular, condition (iii) above would be violated.

The possibility of tachyon inertial frames in two-dimensional space-time provides that space-time with a radical "spatialization of time", namely the property of an interval being space-like or time-like is merely a relative property dependent on how that interval is being observed.  For example, an interval along the world line of an observer would be viewed by that observer as being "purely of time", but it could be seen by some other observer as being “purely of space”.  Thus time is indeed ideal in two-dimensional space-time.

This can be viewed as providing a sufficient metaphysical distinction between two-dimensional and higher dimensional space-time, as to preclude two as a possible dimensionality of space-time, if a possible space-time is to have a structure at all similar to the actual (four-dimensional) space-time in which we exist.  Thus, the ideal nature of time in two-dimensional space-time (where it doesn't have a causal structure) can be taken to emphasize by contrast the reality of time (as a causal structure) in our four-dimensional space-time.  See (Reichenbach 1949) and (Reichenbach 1958) for discussions concerning the causal concept of time in relativity theory implying the reality of time.  In that concept of time, an event A is taken to occur before an event B if they are separated by a time-like interval, and some inertial observer has its time component for A being less than its time component for B (this is observer independent for n  2 dimensional space-time).  A and B are taken to be simultaneous, if they are separated by a space-like interval (also observer independent for n  2 dimensional space-time).  Note the materialistic nature of special relativity theory (at least for n  2 dimensional space-time), where the maximal velocity for matter and energy determines the temporal structure of the world.

On the other hand if, along with Gödel, we feel that the possible constrains the actual (see the next section for a discussion of this "modal argument" of Gödel), we must conclude that the theory of tachyon inertial frames provides further evidence, in addition to Gödel's rotating universes, for the view that relativity theory implies that time is ideal, since in two-dimensional space-time whether an interval is even time-like is observer dependent.
In (Einstein, 1974, 38), Einstein gives the following brief argument for the impossibility of tachyons: "That material velocities exceeding that of light are not possible, follows 

                                                          ____

from the appearance of the radical 1-v2 in the special Lorentz transformations".

Thus Einstein clearly presupposed that:

(1) If I is an inertial frame and a particle p has a constant (non-luminal) velocity with respect to I, then p must be equipped with an inertial frame Ip.

(2) If I, I' are any two inertial frames then the "observations" of I, I' must be related by the above mentioned "special" Lorentz transformations.

"Imaginary mass" tachyon theories, such as the one described in (Terletski 1968), (Feinberg 1967), follow from the rejection of (1) but the acceptance of (2).

Tachyon inertial frame theories (Parker 1969), in which tachyons enjoy real mass, reject (2) but accept (1).

It follows from our observations above that the structure of two-dimensional space-time reveals the invalidity of (2), but the structure of the (actual) four-dimensional space-time forces us to also reject (1), if we are to discuss tachyons within a relativistic framework.  (Note that this rejection of (1) is not "unique" since we also do it for photons).

                                                                                                   ____

In any case, although sections 1-3 of this paper indicate that 1-v2 being imaginary for 

v > 1 does not preclude the existence of hyperlight inertial frames, but only indicates that affine transformations different than the sublight ones are required, the present section indicates that the elementary theory of quadratic forms, together with the dimensionality of space, does preclude the existence of such observers.

Gödel’s Rotating Universes
Gödel’s results on relativistic cosmology provide rotating universes that satisfy Einstein’s equations on general relativity (Gödel 1949a), but do not have a distinguished absolute time. Some of Gödel's solutions possess the property that time travel into the past is possible (they contained closed world lines).  
Gödel takes his relativity results to imply that time does not have an objective existence but has meaning only relative to the observer that perceives it, since in his rotating universe there do not exist global times.  Time is ideal not real.  Gödel believed that Einstein not so much explained time as he explained time away (Yourgrau, 1991, vii). Gödel’s "modal" argument proceeds as follows: Even if our universe is not of the rotating kind (which it doesn’t appear to be),

“The mere compatibility with the laws of nature of worlds in which there is no distinguished absolute time, and [in which], therefore, no objective lapse of time can exist, throws some light on the meaning of time also in those worlds in which an absolute time can be defined.  For, if someone asserts that this absolute time is lapsing, he accepts as a consequence that whether or not an objective lapse of time exists (i.e., whether or not a time in the ordinary sense of the word exists) depends on the particular way in which matter and its motion are arranged in the world.  This is not a straightforward contradiction; nevertheless, a philosophical view leading to such consequences can hardly be considered as satisfactory” (Gödel, 1949b, 206-207).

Therefore, the dependence of absolute time in our universe on the incidental distribution of mass in that universe contradicts the absoluteness of the absolute time.  For time (as we know it) to exist at all, it must exist with a necessary structure.  Thus, for Gödel, here the possible constrains the actual.
Recall that, in the previous section, we obtained two possible (but opposing) metaphysical interpretations of the naturalness of tachyon inertial frames in two-dimensional space-time vs. their evident inconsistency with special relativity theory in higher dimensional space-time.  For one, if we, along with Kurt Gödel, consider "possible worlds" that are consistent with relativity theory to constrain the nature of the "actual world" that we live in, then we can consider the naturalness of tachyon inertial frames in two-dimensional space-time to provide additional evidence for Gödel's view that time is ideal.  Indeed whether a space-time interval is space-like or time-like is observer dependent.  Thus, starting with a space-time that is postulated to have objective existence, we derived that both space and time (by themselves) are ideal.  This is an extreme affirmation of the statement of Minkowski (Minkowski 1908) that: “Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality.”

On the other hand, if we consider the metaphysical structure of the "actual world" to constrain what can be considered a "possible world", then we can consider the results of the previous two sections as precluding the possibility that space-time could be two-dimensional.  Specifically, these results provide a sufficient metaphysical distinction between two-dimensional and higher-dimensional space-time, as to preclude two as a possible dimensionality of space-time if a possible space-time is to have a structure at all similar to the actual (four-dimensional) space-time in which we exist.  Similarly, Gödel's rotating universes can be excluded as being possible solutions to Einstein's equations on metaphysical (instead of, or in addition to, physical) grounds.  The distribution of mass is not as incidental as it seems; it affects the metaphysics of the universe as much as does the dimensionality of space-time.  Indeed we can interpret Gödel's rotating universes as indicating that the materialistic nature of the universe determines aspects of the metaphysical nature of the universe.  Gödel's results provide especially strong evidence that general relativity theory possesses a strong materialistic content.  Concerning both the existence of closed world lines in rotating universes and the existence of tachyon inertial frames in two-dimensional space-time, the ideal nature of time in "other universes" emphasizes by contrast the reality of time in our universe.
One way to think of the preceding interpretation is as follows.  Metaphorically speaking, suppose that God woke up one morning and decided to construct a universe.  Being a disciple of structured systems design methodology, he first designed the metaphysical principles that he wished his universe to satisfy, and then designed the physical universe that “implemented” the desired metaphysical principles.  Thus, any possible universe must satisfy those metaphysical principles.  How can we ascertain which metaphysics God had in mind? By studying the metaphysics of our universe.  We have seen that a universe based on two-dimensional space-time (with tachyon inertial frames) and a rotating universe (with no distinguished absolute time and possibly possessing closed world lines) do not have the same metaphysics as our universe.  Thus they can be precluded as being possible universes.  Although, the distribution of mass that leads to rotating universes may seem at first glance to be more incidental than the dimensionality of space-time, they are both seen to be inherent properties, since they both have metaphysical impact.

Therefore, our interpretation is related to the question raised by Weyl, Einstein, and others (see (Weyl, 1969, 286) and (Weyl, 1949, 70), for example) as to whether God had any choice in his decisions when He created the universe.  Specifically, Weyl asked (Weyl, 1949, 70) “What inner peculiarities distinguish the case n=3 among all others?  If God, in creating the world, chose to make space three-dimensional, can a ‘reasonable’ explanation of this fact be given by disclosing such peculiarities?”  That is, is there any characteristic property of four-dimensional space-time that distinguishes it from other-dimensional space-times?  We didn’t answer this question, but we arguably have answered a special case of it: we have provided a metaphysical distinction between two-dimensional space-time and higher-dimensional space-time, which precludes space-time from being two-dimensional.  That is, we didn't answer the question as to what's so special about 4 making it the only possible dimension for space-time, but we did answer the lesser question as to what's so special about 2 excluding it as a possible dimension for space-time.

Finally, we comment on Gödel's statement in (Gödel, 1949, 559) that the ideal nature of time is a resolved issue for special relativity theory, but remains to be resolved for general relativity theory (and resolving it for general relativity theory is the purpose of (Gödel 1949), with its modal argument involving rotating universes).  However, even if we agree with (Reichenbach, 1949, 302) that special relativity theory provides time as a causal structure that has as much reality as the relation "father" (Gödel apparently rejects the causal concept of time for special relativity theory (Gödel, 1946/9, 234-235)), the ideal nature of time in two-dimensional space-time can be used (as we have indicated) in a modal argument for the ideal nature of time in special relativity theory.
APPENDIX

Proof of Theorem 2

Assume, without loss of generality, that v > 1.

                              

(i)

 Let E1' = aE1 + bE2
                   

       E2' = cE1 + dE2
                                                                                              
Since tE1 + xE2 = t'E1' + x'E2', (t-t'a-x'c)E1 + (x-t'b-x'd)E2 = 0.  Since E1, E2 are linearly independent:
t = at' + cx'

x = bt' + dx'.

Solving for x', t':

 x' = (a/(ad-bc))(x-(b/a)t) = (a/(ad-bc))(x-vt)
                                                                                                                 [9]

 t' = (c/(bc-ad))x + (d/(ad-bc))t

Using Equation [9]:

  x' = h(x-vt)
                                                                                                               [10]

  t' = ex + ft
By Proposition 2, x2 - t2 = t'2 - x'2.  Thus, from Equation [10]:

x2 - t2 = (ex+ft)2 - [h(x-vt)]2 , for all real x, t                                           [11]

e2 - h2 =1                                                                                                  [12]

ef + h2v = 0                                                                                              [13]

f2 - h2v2 = -1                                                                                             [14]

We solve for |e|, |f| in Equations [12], [14] respectively and substitute in Equation [13]:

  ____   _____

h2+1 h2v2-1 = h2v

                               ____               ____               ____

Therefore, |h| = 1/v2-1 ,  |e| = v/v2-1 ,  |f| = 1/v2-1.

All that remains is to determine the sign of e, f and h.  It follows from Equations [3], [4], [7], and [8], in the proof of Theorem 1, that

a = d and b = c                                                                                         [15]

Since v = b/a > 0, we have two cases to consider:

Case 1:  a,b,c,d > 0.

Case 2:  a,b,c,d < 0.

     Case 1 yields the desired transformations since, by Equation [15] and Corollary 1.1, ad-bc = a2-b2 = -1, which implies, by Equation [9] that f,h < 0 and e > 0.

     We show that Case 2 is excluded since it violates the assumption in (i):

Under Case 2 we have

                   ____                         ____

x' = (x-vt)/v2-1 ,   t' = (-vx+t)/v2-1 

                                                                                                                ____

This implies for x' = 0 (i.e., along the world-line of I') that t' = -tv2-1 .  Therefore, I views the events on the world-line of I' in the temporal order opposite to that in which I' views them, contradicting the assumption in (i).

(ii) The proof of (ii) follows similarly to the proof of (i).

Proof of Corollary 2.5

We prove this corollary for the case where I, I' satisfy the assumption in (i) of Theorem 2 and where v > 1.  The proofs for the other cases follow similarly.

Let w' be the velocity of I" with respect to I'.  By Corollary 2.3, w' > 0.  If we can show that

                           
E1" = a"E1' + b"E2' ,  a",b" > 0

then the motion of I" with respect to I' will satisfy the assumption in Theorem 2 (i) and, by Corollary 2.1, we are done.

Now, by Equation [15] in the proof of Theorem 2, and Equation [7] in the proof of Theorem 1:

                     
E1" = AE1 + BE2
                      
E1 = a'E1' + b'E2'  

                     
E2 = b'E1' + a'E2'

where A, B, b' > 0 and a' < 0.

Thus,

                                                      
E1" = (Aa' + Bb')E1' + (Ab' + Ba')E2'

But Aa' + Bb' > 0, since |B/A| = B/A = w > 1/v = |a'/b'|, and thus Ab' + Ba' > 0, since v" = (Ab' + Ba')/(Aa' + Bb') > 0.
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� Note that we implicitly adopt units in which the speed of light is 1.


� Compare [7] with Corollary 2.1.  Also note that in the v < 1 case b = -b' (i.e., instead of the sign of the 


                                                                                                                                             


time component, it is the sign of the space component of E1 with respect to I' which differs from the sign of 


                                                                                     


the corresponding component of E1' with respect to I), which reflects the fact that Corollary 2.1 is false when v < 1.


� The phenomenon that, given any two events separated by a space-like interval, there exist two inertial observers (having a sublight relative velocity) which disagree on the temporal order of those events.





