
A Multimedia Traffic Classification Scheme for Intrusion Detection Systems

Oge Marques and Pierre Baillargeon
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL – USA

{omarques, pbaillar}@fau.edu

Abstract

Intrusion Detection Systems (IDS) have become

widely used tools for ensuring system and network
security. Among many other challenges, contemporary
IDS have to cope with increasingly higher bandwidths,
which sometimes force them to let some data go by
without being checked for possible malicious activity.

This paper presents a novel method to improve the
performance of IDS based on multimedia traffic
classification. In the proposed method, the IDS has
additional knowledge about common multimedia file
formats and uses this knowledge to perform a more
detailed analysis of packets carrying that type of data.
If the structure and selected contents of the data are
compliant, the corresponding stream is tagged
accordingly, and the IDS is spared from further work
on that stream. Otherwise, an anomaly is detected and
reported.

Our experiments using Snort confirm that this
additional specialized knowledge results in substantial
computational savings, without significant overhead
for processing non-multimedia data.

1. Introduction

Intrusion Detection Systems (IDS) have become
one of the tools of choice for ensuring system and
network security. IDS usually scan ongoing traffic
looking for patterns and/or signatures that might
indicate malicious or unauthorized activity that should
be investigated [1, 2].

One of the issues currently facing network-based
IDS is the high computational cost of doing real-time
analysis when a large amount of traffic is passing
through a connection. In such cases, the IDS usually
does not have any other option but to blindly skip
certain packets [1].

This paper presents a novel method to improve the
performance of IDS based on multimedia traffic
classification. Under the proposed approach, the IDS
has additional knowledge about common multimedia
file formats and uses this knowledge to perform a more
detailed analysis of packets carrying that type of data.
If the data complies with the standard format, the
corresponding stream is flagged and the remaining
packets are ignored by the IDS, which can now focus
on other traffic, therefore reducing the computational
cost and making the IDS more efficient. Otherwise, an
anomaly is detected and reported for further action by
the system administrator.

This paper is organized as follows: Section 2
presents an overview of Intrusion Detection Systems,
with emphasis on topics that are relevant to this work.
Section 3 focuses on Snort, a popular open-source
network intrusion detection tool used in our
experiments. Section 4 explains the proposed method
in detail. Section 5 shows results of experiments using
Snort. Finally, we derive some conclusions and present
directions for future work in Section 6.

2. Intrusion Detection Systems

“Intrusion Detection Systems are software or
hardware systems that automate the process of
monitoring the events occurring in a computer system
or network, analyzing them for signs of security
problems [3]”. With the increase in the amount and
severity of network-based attacks over the past few
years, IDS have become an important and widely used
additional tool in the network security infrastructure of
many organizations. Several surveys and taxonomies
for IDS have been published recently, such as [4]. In
this section, we summarize some aspects of IDS that
are directly related to this work.

2.1. Host-based vs. network-based

Intrusion Detection Systems can be fed data in a

variety of manners. Multiple sensors spread across a
network can report to a central IDS (network-based) or
the IDS can be installed and monitor data on one
device (host-based). These are generalized cases and
there exist many configurations that combine both of
these deployment techniques. The multimedia
classification preprocessor described later in this paper
works on any of these deployment schemes.

2.2. IDS strengths and limitations

An IDS enables a network administrator to deal

with intrusions more efficiently by creating a
centralized point where suspicious activity can be
monitored and later analyzed with tools like ACID and
Sguil. This eliminates the very time consuming process
of manually checking log files and trying to identify
suspicious activity.

While the use of IDS makes intrusion detection less
of a chore, it must be noted that they cannot prevent
intrusions. The usefulness of the IDS comes after an
intrusion has taken place, allowing an administrator to
retrace the steps of the intruder and find what security
measures were bypassed.

3. Snort

Snort [5, 6] is a multi-OS, multi-platform network
intrusion detection tool that has experienced great
popularity during the past three years, mostly due to its
extensible architecture and open source distribution. It
was originally envisioned as a lightweight IDS, but it
has evolved to become a full-featured, real-time IP
traffic analysis and packet logging system.

Snort works by matching traffic patterns to its rules,
stored in a ruleset. Once a packet enters through the
Network Interface Card (NIC), it is decoded by a
packet decoder, which determines which protocol is in
use for a given packet and matches the data against
allowable behavior for patterns of that protocol. If any
anomaly (e.g., malformed headers, overly long
packets, unusual or incorrect TCP options) is detected,
an alert is generated.

After the packets are matched against the decoder,
they are sent to (optional) preprocessors.
Preprocessors are plug-ins for Snort that allow
additional parsing and processing of incoming data.
Snort users can write (in ‘C’) their own preprocessor
modules, extending its functionality past the base
ruleset to include features such as anomaly detection

and session reconstruction. The ability to easily add
functionality to Snort with preprocessors is offset by
the computational overhead that is added with each
preprocessor that Snort uses. Any preprocessor in
Snort can be turned on or off simply by adding a line
to a configuration file for the program.

The detection engine is the component of Snort that
takes data from the packet decoder and preprocessors
(if they are enabled) and compares it against the rules
in the ruleset. After the rules have been matched
against the data, Snort’s logging mechanism allows
archival of packets that triggered Snort rules, whereas
its alerting mechanism is used to notify the system
administrator that a rule has been fired.

Alerts in Snort can be displayed to the window the
program is running in, logged to a text file, or entered
into a database. Database logging is the most useful of
these options, as it allows multiple Snort sensors to
report alerts to one central location.

4. The proposed method

In this section we explain the proposed method in
detail. We start by revisiting the research questions
that prompted this work, and then proceed to explain it
in more detail, with special attention to relevant
implementation aspects.

4.1. Background

Work on this project began by attempting to answer
the research question: “How can the performance of
IDS – and, ultimately, the security goals that they
attempt to achieve – be improved by incorporating
knowledge of multimedia protocols, file formats, and
headers into their operation?” More specifically: How
much and what type of additional knowledge is
needed? How should it be represented? What type of
performance improvement can be achieved and how
significant can it be? In the remainder of this section
we hope to provide meaningful answers to these
questions.

In order to consider how much and what type of
additional knowledge is needed, let us start by looking
at the current knowledge level upon which IDS
decisions are usually made. Currently, IDS are capable
of blocking multimedia content based on port number
(streaming audio/video), string matching of content
type (e.g., content: "User-Agent|3A| Quicktime") and
file extension. None of these techniques verify the
validity of the content; they simply assume that if data
appears to be (from external identifiers, like MIME)
multimedia, then it is.

This level of protection is basic, and we propose
adding another level, which would use more header
information to classify multimedia. This level
(medium) could be the precursor to a higher level
(expert) that would classify data based on a more in-
depth knowledge of multimedia than simple header
information and may contain some form of learning
algorithm. The medium level of classification would
entail examining the contents of an incoming data
stream and looking for known multimedia
characteristics, like JPEG or MPEG markers.
Additionally, the IDS could analyze the markers to
ensure they contained values within acceptable limits,
checking to make sure, for instance, that the frame rate
value is not a negative or excessively large number.

Once we had settled on adding this extra level of
protection, our attention shifted to answering the next
question: How should this knowledge be represented?
Network-based IDS, such as Snort, have a
customizable level of knowledge of the packets that
are sniffed as they traverse the network. At the very
basic level (implemented within the packet decoder
module in Snort), the transport-level protocol is
determined and the data is matched against allowable
behavior for patterns under that protocol. Optionally,
preprocessors perform a more detailed parsing and
analysis of the data. Additional knowledge can be
modeled by creating more preprocessor modules to
handle those special cases. Therefore, the answer to the
modeling and representation of additional knowledge
had a simple answer within the Snort framework,
which allowed us to implement a multimedia classifier
as a Snort preprocessor (Figure 1).

Last, but certainly not least, we turned our focus to
the expected performance improvement that could
result from this additional level of knowledge and
protection. Since we knew that the added functionality
provided by preprocessors is offset by the associated
computational overhead, we needed to devise a scheme
in which we would make up for the additional CPU
cycles needed to inspect multimedia traffic more
closely. The answer to this challenge came in the form
of a two-class classifier, whereas an incoming or
outgoing stream is classified either as multimedia or
non-multimedia.

Once a session is classified as multimedia traffic,
Snort would be able to determine if an authorization
was appropriate. By preprocessing and authorizing the
data, we can take advantage of Snort’s global
do_detect flag that tells Snort to skip the detection
phase (ruleset comparison) of the flagged packet.
Since multimedia files are usually very large, the
additional time spent classifying and flagging
multimedia data using the first few packets would be

offset by the time savings throughout the remaining
packets corresponding to that stream, thereby
achieving the intended performance improvements.

Snort

Packet decoding

Detection engine

Multimedia
classifier

Preprocessors

Alerts generated

Ruleset

Incoming data

Figure 1 - IDS data processing

4.2. Goals and assumptions

Our method has the following primary goals:
(1) To save processor usage when dealing with

(potentially large) legitimate multimedia files,
allowing the IDS to focus on other types of
traffic and minimizing the number of packets
that may go by unchecked.

(2) To generate alerts when anomalous,
multimedia-looking, traffic (e.g., a large file
renamed with a .avi extension but not
compatible with the AVI header rules) is
detected.

The proposed scheme works under the following
assumptions:

(1) We assume that multimedia traffic is naturally
benign (which it appears to be currently – with
the exception of the recent discovery of the
JPEG exploit [7]).

(2) We assume that a network-based IDS, such as
Snort, has been properly installed and
configured to perform general intrusion
detection tasks.

If assumption (1) turns out to be false in the future,
our method should make it much easier to create IDS
rules to properly deal with this traffic, providing, in a
sense, a future proofing capability to the system.

4.3. How it works

Multimedia traffic classification is done with a

Snort preprocessor, responsible for looking at traffic
for multimedia identifiers, such as headers, to identify
incoming multimedia traffic. The classification process
(Figure 2) may be understood simply as a two-class
classifier (multimedia and non-multimedia), but it can
be extended to include a number of more specialized
multimedia classifiers, depending on the users’ needs
(e.g., possibly for the purpose of detecting malicious
activity in the future disguised as multimedia traffic).

Once a session is found to be containing multimedia
traffic, the IDS is able to determine if an authorization
is appropriate. Authorization will not necessarily be
immediate, and may require multiple examinations of a
data stream or session to determine content validity. If
a stream is deemed to be unauthorized, normal IDS
operation will continue and the data will be analyzed
according to the remaining rulesets. The ultimate goal
of the classification stage is a process that creates
intelligent decisions based on previously encoded
knowledge.

Possible outcomes of the multimedia classification
stage are as follows:

(1) Data is recognized as multimedia stream and
authorized, thereby allowing upcoming packets to
bypass the IDS detection engine.

(2) Data is recognized as a false multimedia stream:
an alert is generated to notify an administrator that a
file has been transferred under possible false pretenses
and the remaining packets in the stream bypass the IDS
detection engine since they’ve already been
determined to belong to a stream falsely posing as
multimedia.

(3) The data is not multimedia in nature and
continues through the IDS detection engine as it
normally would if the multimedia classifier did not
exist at all.

The first two scenarios result in significant
processor savings, while the third has a slight increase
in processor usage, since we have added a
preprocessing stage before the detection engine which
must analyze a few of the first packets of each new
session.

After authorization, traffic containing multimedia
content will be flagged and be able to bypass the IDS,
thereby allowing the IDS to focus its resources

analyzing the remaining traffic more thoroughly. This
bypass mechanism is accomplished by recording the
session number when a transmission is authorized, so
consequent packets can be routed around the IDS (or
through the IDS, but without the IDS having to do a
comparison of the traffic against its ruleset).

Currently, Snort rules typically work by looking for
traffic on well known multimedia ports, such as port
80, however someone could circumvent this easily by
changing the server and clients to use a different port.
The proposed multimedia classification scheme would
make these types of rules much more accurate by
flagging data based on content, not on packet headers.

Multimedia
classifier

Packet *p

Multimedia
?

Authorization

Yes

No

Detection engine

Specialized
rules

Examine
more

Reject

Figure 2 - Multimedia classifier

4.4. Implementation aspects

The idea behind our classification method is that
multimedia traffic can be uniquely identified by certain
characteristics, such as the header in an AVI file, and
that once the traffic has been classified the remaining
packets for the stream or session containing the
multimedia content can bypass the analysis engine of
the IDS. Our work relies on specialized knowledge of
multimedia files. Currently, we have encoded limited
knowledge of three popular file formats: JPEG, AVI,
and MPEG.

JPEG headers consist of markers, which identify
various parts of the header. These markers can be
identified by one or more FF bytes followed by a
marker byte. There are several marker codes of

interest, defining things such as the quantization table
location and start of frame [8]. After a marker has been
located, it is possible to examine the data that follows
the marker to determine whether or not a file conforms
to expected standards. For example, following the FF
C0 marker is the start of frame marker, which is
followed by header length along with image height and
width and number of components (3 for RGB, 1 for
grayscale images).

AVI headers contain RIFF data chunks that can be
parsed to retrieve information about an AVI movie.
The most useful component for IDS classification
purposes is the ‘movi’ header which contains number
of frames, frame height/width, streams (audio/video),
microseconds between frames and maximum data rate
[9]. MPEG headers [10] are similar to JPEG in the
structure using markers.

The following pseudocode explains the general
relationship between Snort, the multimedia
classification preprocessor and the detection engine
(timing measurements for results in this paper were
done using difference in execution time measured with
the clock function):

snort_main() {

capture_packets();
extract_packet_data();
for_all_packets {

 preprocessors(packet *p);
 detection_engine(packet *p); } }

/* Run packet through detection engine */
detection_engine(packet *p) {
start=clock();
if(do_detect)
 check_packet_against_ruleset(packet *p);
stop=clock();
det_cpu_usage+=stop-start; }

/* Run preprocessors */
preprocessors(packet *p) {
 frag2(packet *p);
 stream4(packet *p);
 etc(packet *p);
 multimedia_classifier(packet *p); }

/* Analyze packet to see if it contains
multimedia data */
multimedia_classifier(packet *p){
 start_mm=clock();
 while(!at_end_of_packet_data) {

if(current_byte ==
known_multimedia_marker) {

if(next_byte ==
known_mm_marker_part_2) {

/* More checks until header
sequence is verified */

 do_detect=0;
// Stream is authorized

 } } }
 stop_mm=clock();
 mm_cpu_usage+=stop_mm-start_mm; }

5. Experiments and results

Our approach was tested by monitoring FTP
transfers of multimedia and non-multimedia files using
Snort. All experiments had the same common goal: to
measure processor usage and evaluate the impact of
adding the proposed specialized preprocessor on the
overall performance of the IDS. The pseudocode
indicates which submodules are involved and where
exactly the time measurements are done.

5.1. Single file transfers

In the first series of experiments we looked at
specific file types, one at a time. For AVI files varying
from 716 KB to 56 MB in size, a fixed number of
packets (two) per file was required to classify them as
valid multimedia data. The corresponding savings in
processor usage was somewhat inversely proportional
to the file size: for small files, the processor was used
only 15% of the time it would have without our
classifier, while for very large files, this number would
drop to less than 1%. Similar results were obtained for
MPEG and JPEG files between 417 KB and 67 MB in
size. These experiments also confirm that the overhead
introduced by adding an extra preprocessing step is
minimal – less than 1%.

5.2. Mixed traffic

These experiments combine multimedia and non-
multimedia files into a batch FTP job. Multiple files
were transferred with the multimedia classification
preprocessor active and then again without to evaluate
CPU utilization. Figure 3 summarizes the results,
indicating that processor usage is inversely
proportional to the amount of multimedia data in the
batch.

6. Conclusions and future work

We have proposed and implemented a multimedia
traffic classification scheme that provides additional
knowledge to, and extends the functionality of, a
network-based IDS (such as Snort). It was
implemented as an extra preprocessor module for Snort
and tested with several combinations of multimedia
and non-multimedia traffic.

Currently, IDS systems, such as Snort, usually are
able to block files based on file extension. With the
proposed scheme, it is possible to block based on the
actual content of the files.

The proposed method helps system administrators
in two main ways:

(i) for legitimate multimedia traffic, it tags the
corresponding stream and saves processor
usage by not looking at subsequent packets of
the same stream;

(ii) for anomalous traffic (e.g., a large file renamed
with an AVI extension but incompatible with
the AVI header rules), it generates the
corresponding alerts.

Administrators will have more accurate reports, and
hopefully a higher detection rate of intrusions because
the IDS will be inspecting more relevant information
(non-multimedia), when resources become saturated.
Specific examples include encrypted (as in the case
with SSL connections) and out-of-sequence packets.
Without any authorization scheme an IDS must
decrypt or re-order the incoming data for analysis,
whereas authorized traffic would be allowed through
without needing this extra effort.

0

5000

10000

15000

20000

25000

0 19 41 60 80 100
% of Multimedia Traffic

Pr
oc

es
so

r U
sa

ge

Detection Multimedia Classifier Total

Figure 3 – Processor usage versus percentage

of multimedia traffic

Results of our experiments confirm that significant
processing savings can be gained, given that there is
minimally a small amount of multimedia traffic on a
network. The results indicate that this is a promising
avenue worth pursuing a bit further.

The current work has a number of limitations which
should be relaxed over time, particularly:

(i) It assumes file downloading / uploading via FTP
or HTTP. Extension to streaming is being investigated
and implemented.

(ii) Current file format knowledge is limited to
JPEG, MPEG, and AVI. Extension to other popular
file formats (e.g., WMV and MOV) is under way.

(iii) The amount of knowledge encoded into the
classification stage is currently limited to static header
markers. Adding an extra level of knowledge to
enable analysis of header parameters such as valid
frame rate, width, and height, etc., will be implemented
soon.

Future work may also include the design and
implementation of a machine learning scheme by
which rules are created and updated based on observed
traffic.

Acknowledgment

This work was partially supported by a grant from

the U.S. Department of Defense (DoD).

References

[1] R. Bace, “An Introduction to Intrusion Detection &
Assessment” (White paper), ICSA Labs, January 2000.

[2] R. A. Kemmerer and G. Vigna, “Intrusion Detection: A
Brief History and Overview”, IEEE Computer, Vol. 35, Issue
4, April 2002, pp. 27-30.

[3] R. Bace and P. Mell, “Intrusion Detection Systems”
(Technical Report), National Institute of Standards and
Technology, November 2001.

[4] S. Axelsson, “Intrusion Detection Systems: A Survey and
Taxonomy” (Technical Report 99-15), Department of
Computer Engineering, Charlmers University, March 2000.

[5] J. Beale et al., Snort 2.1 – Intrusion Detection (2nd ed.),
Syngress Publishing, Rockland, MA, 2004.

[6] Snort web site: http://www.snort.org/

[7] “New, dangerous Microsoft JPEG exploit released”.
http://www.infoworld.com/article/04/09/23/HNnewjpegexplo
it_1.html

[8] JPEG Header information:
http://www.obrador.com/essentialjpeg/headerinfo.htm

[9] AVI Header information:
http://pvdtools.sourceforge.net/aviformat.txt

[10] J. Mitchell et al., MPEG Video: Compression Standard
(Digital Multimedia Standards Series). Kluwer Academic
Publishers, October 1996.

