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Abstract: Object segmentation from a video stream is an essential task in video processing and forms the foundation
of scene understanding, object-based video encoding (e.g. MPEG4), and various surveillance and 2D-to-
pseudo-3D conversion applications. The task is difficult and exacerbated by the advances in video capture
and storage. Increased resolution of the sequences requires development of new, more efficient algorithms for
object detection and segmentation. The paper presents a novel neuralnetwork based approach to background
modeling for motion based object segmentation in video sequences. The proposed approach is designed to
enable efficient, highly-parallelized hardware implementation. Such a system would be able to achieve real
time segmentation of high-resolution sequences.

1 INTRODUCTION

Object detection and segmentation from a video
stream are essential tasks in video processing and
form the foundation of scene understanding, object-
based video encoding (e.g. MPEG4), various surveil-
lance applications, as well as the emerging research
into 2D-to-pseudo-3D video conversion. The task is
difficult and exacerbated by the advances in video
capture and storage (e.g. HDTV, QuadHDTV). In-
creased complexity of the sequences requires devel-
opment of new, more efficient algorithms for object
detection and segmentation.

Commonly used approach to extract foreground

objects from the image sequence is through back-
ground suppression (Haritaoglu et al., 2000)(Stauffer
and Grimson, 2000)(Toyama et al., 1999), when the
video is grabbed from a stationary camera. However,
the task becomes difficult when the background con-
tains shadows and moving objects, and undergoes il-
lumination changes. Significant scientific effort has
been spent on the development of adaptive models of
background and segmentation techniques. A number
of proposed techniques are able to achieve real-time
processing of comparatively small video formats(e.g.
120x160 pixels, CIF resolution) and, usually, at some-
what reduced frame rates. It is unlikely, however,
that the existent object detection approaches will be



able to efficiently cope with the increase in the res-
olution of video sequences. The development of an
parallelized object detection approach, which would
allow for efficient hardware implementation and ob-
ject detection in real-time for high-complexity video
sequences (in terms of the frame size as well as back-
ground changes), is the focus of this paper.

The proposed solution employs a feed-forward
neural network to achieve background subtraction. To
this end, a new neural network structure is designed,
serving both as an adaptive Bayesian model of the
background in a video sequence and an algorithm for
background subtraction and foreground object detec-
tion and segmentation. Neural networks posses intrin-
sic parallelism which can be exploited in a suitable
hardware implementation to achieve fast segmenta-
tion of foreground objects.

The rest of the paper is organized as follows: Sec-
tion 2 provides a survey of related published work.
Section 3 describes the main aspects of the proposed
approach. Section 4 is dedicated to the presentation of
simulation results. Section 5 contains the conclusions
and some directions for future work.

2 RELATED WORK

Some of the early object segmentation methods deal-
ing with the instances of non-stationary background
were based on smoothing the colour of a background
pixel over time using different filtering techniques
such as Kalman filters (Karmann and von Brandt,
1990), or Gabor filters (Jain et al., 1997) to create
a reference background frame. The reference frame
is a model of background, which is constantly up-
dated and used to segment the foreground objects by
subtracting it from the current frame of the input se-
quence. However, since these methods are based on
the most restrictive assumption that movements of the
background are much slower than those of the objects
to be segmented, they are not particularly effective for
sequences with high-frequency background changes.

Slightly better results were reported for techniques
that rely on a Gaussian-based statistical model whose
parameters are recursively updated in order to fol-
low gradual background changes within the video se-
quence(Boult et al., 1999). More recently, this model
was significantly improved by employing a Mixture
of Gaussians (MoG), where the values of the pix-
els from background objects are described by multi-
ple Gaussian distributions(Ellis and Xu, 2001)(Stauf-
fer and Grimson, 2000)(Ya et al., 2001). This model
was considered promising since it showed good fore-
ground object segmentation results for many outdoor
sequences. However, weaker results were reported
(Li et al., 2003) for video sequences containing non-

periodical background changes (e.g. due to waves and
water surface illumination, cloud shadows, and simi-
lar phenomena). These models are parametric in the
sense that they incorporate underlying assumptions
about the probability density functions (PDFs) they
are trying to estimate.

In 2003, Li et al. proposed a method for foreground
object detection employing a Bayes decision frame-
work (Li et al., 2003)(Li et al., 2004). The method
has shown promising experimental object segmenta-
tion results even for the sequences containing com-
plex variations and non-periodical movements in the
background. In addition to the generic nature of the
algorithm where noa priori assumptions about the
scene are necessary, the authors claim that their algo-
rithm can handle a throughput of about 15 fps for CIF
video resolution. The approach is specific in the fact
that it uses a statistical model of for the changes be-
tween the current frame and the reference background
image maintained by applying an Infinite Impulse Re-
sponse (IIR) filter to the sequence. A Bayesian clas-
sifier is then used to classify the changes, detected
through frame differencing between the current frame
and the reference frame, as pertinent to background
objects or foreground objects. The statistical model is
non-parametric since it does not impose any specific
shape to the PDFs learned. However, for reasons of
efficiency and improving results the authors applied
binning of the features and assigned single probabil-
ity to each bin, leading to a discrete representation of
PDFs. The model is general in terms of features ex-
tracted from the sequence and they experimented with
the use of different features. The results of these ex-
periments are reported in (Li et al., 2004).

Recently the approach of Li et al. has been adopted
and extended to create a part of a surveillance sys-
tem intended for maritime environments (Socek et al.,
2005). The results in this domain have been improved
by altering the frame differencing step of the algo-
rithm as well as using a color-based still image seg-
mentation instead of the morphological operations in
the post-processing of the background-subtraction re-
sults.

While the use of Bayesian models as bases for
background subtraction is not new, it has been lim-
ited by the fact that they are general in the sense that
they impose no constraints on the shape of the es-
timated probability density function. This typically
makes them more computationally expensive than
most of their more restrictive counterparts (e.g.(Boult
et al., 1999)(Ellis and Xu, 2001)(Stauffer and Grim-
son, 2000)(Ya et al., 2001)). However, moving away
from the particle estimator systems used typically to
estimate probability density functions in the Bayesian
models (Li et al., 2003)(Li et al., 2004) to neural net-
works, it is possible to make them suitable for parallel
execution and increase their effectiveness.



Classical Probabilistic Neural Network
(PNN)(Specht, 1990) architecture has been used
by researchers to improve the object segmen-
tation(Doulamis et al., 2003) and perform the
classification of segmented objects (Tian et al.,
2000). In both solutions the neural network is a
supervised learning classifier guided by a a different
supervisor classifier algorithm.

In (Doulamis et al., 2003) authors present an unsu-
pervised video object (VO) segmentation and track-
ing algorithm based on an adaptable neural-network
architecture. The proposed scheme comprises a VO
tracking module and an initial VO estimation module.
Object tracking is handled as a classification problem
and implemented through an adaptive network classi-
fier, which, however, relies on the results of the ini-
tial video object segmentation module to adjust it-
self to the variations of the sequence. Based on the
video object segmentation results, a set is constructed,
which is used to retrain the network, as proposed by
the same authors in (Doulamis et al., 2000). To de-
termine when the network should be retrained a spe-
cific decision mechanism is used. It consists of a shot
cut detection module and an operational environment
change module. The first is based on the principle
that all different poses that a VO takes within a shot
are usually strongly correlated to each other, while
the second is incorporated as a safety valve to con-
front gradual but significant content changes within
a shot. To detect shot transitions an approach pro-
posed in (Yeo and Liu, 1995) is used while the grad-
ual changes in the environment are estimated based
on the error of the neural network with respect to the
results achieved by the initial object segmentation al-
gorithm. The accuracy of the decision module is cru-
cial for the performance of the system as a whole,
since the retraining of the network is computationally
expensive and frequent retraining ruins the computa-
tional efficiency of the algorithm, while not retrain-
ing when needed leads to poor classification results.
The authors claim improved performance of their ap-
proach over the conventional motion-based tracking
algorithms. Although the whole segmentation algo-
rithm is an unsupervised learner, clearly the retrain-
able neural network is itself a supervised learner, dif-
fering from the approach proposed here. In addi-
tion, since the neural network is but a part of the
background segmentation algorithm, the whole sys-
tem does not posses inherent parallelism of the PNN.
As such, the system is not suitable to serve as basis of
an efficient hardware implementation.

An approach employing a PNN classifier in a
time varying environment is proposed in (Tian et al.,
2000)(Azimi-Sadjadi et al., 2001). A PNN was used
to classify clouds based on their spectral and tem-
perature features in the visible and infrared GOES 8
(Geostationary Operational Environmental Satellite)

imagery data. A temporal updating approach for the
PNN was developed to increase the classification ac-
curacy by accounting for the temporal changes in the
data. The adaptation of the PNN is supervised by
Markov chain models of the temporal contextual in-
formation combined MoG maximum likelihood esti-
mation. The network itself is a supervised leaner and
is updated every time a new frame is processed. As in
the approach of (Doulamis et al., 2003), the PNN is
a submodule of a system, and its parallelism can only
partially be exploited in a hardware implementation.

3 BACKGROUND MODELING
NEURAL NETWORK (BNN)

The proposed background modeling and subtraction
approach relies on a novel adaptive neural network.
The architecture employs an adapted General Regres-
sion Neural Network (GRNN) (Specht, 1991) compo-
nent, to serve as an estimator of the probability den-
sity function of certain features belonging to back-
ground. GRNNs, typically used as Bayesian classi-
fiers, are supervised classifiers, requiring a training
set. However, in the domain of background modeling
it was possible to extend them to form new neural net-
work architecture which is an unsupervised learner.
This Background Modeling Neural Network (BNN)
is suitable to serve both as a statistical model of the
background at each pixel position in the video se-
quences and highly parallelized background subtrac-
tion algorithm. The design of BNN relies on a ba-
sic background modeling idea: feature values corre-
sponding to background object will occur most of the
time, i.e. more often than those pertinent to the fore-
ground.

Three tasks, typical for probabilistic background
modeling (Stauffer and Grimson, 2000)(Li et al.,
2004), which BNN should perform have been iden-
tified:

1. Storing the values of the features and learning the
probability with which each value corresponds to
background / foreground.

2. Determining the state in which new feature values
should be introduced into the model (i.e. when the
statistics already learned are insufficient to make a
decision).

3. Determining which stored feature value should be
replaced with the new values.

The two latter requirements are consequences of
the fact that real systems are limited in terms of the
number of feature values that can be stored to achieve
efficient performance.

The structure of BNN, shown in Figure 1, has three
distinct subnets. The classification subnet is a GRNN



Figure 1: Structure of Background Modeling Neural Network.

(Specht, 1991). It is a central part of BNN con-
cerned with approximating the Probability Density
Function (PDF) of pixel feature values belonging to
background/foreground. The GRNN is a neural net-
work implementation of a Parzen estimator (Parzen,
1962). This class of PDF estimators asymptotically
approaches the underlying parent density, provided
that it is smooth and continuous.

The classification subnet contains three layers of
neurons. Input neurons of this network simply map
the inputs of the network, which are the values of the
features for a specific pixel. The output of the pattern
neurons is a nonlinear function of Euclidean distance
between the input of the network and the stored pat-
tern for that specific neuron. The nonlinear function
used is as proposed by Parzen. The only parameter
of this subnet is a so-called smoothing parameter (σ)
used to determine the shape of the nonlinear function.
The structure of a pattern neuron is shown in Figure
2. The output of the summation units of the classifica-
tion subnet is the sum of their inputs. The subnet has
two summation neurons: one to calculate the prob-
ability of pixel values belonging to background and
the other for calculating the probability of belonging
to foreground.

The classification subnet requires no training to
store the patterns (feature values) representative of
background. This is accomplished simply by setting
the weights of the connections between the input and
pattern neurons to the value of the features of the pat-
tern to be stored. The classification subnet diverges
from GRNN in the way the weights between the pat-
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Figure 2: Pattern neuron of GRNN.

tern and summation neurons are determined. These
values are used to store the confidence with which a
pattern belongs to the background/foreground. The
weights of these connections are updated with each
new value of a pixel at a certain position received (i.e.
with each frame), according to the following recursive
equations:

W t+1

if = (1 − β) ∗ W t
if (1)

W t+1

ib = (1 − β) ∗ W t
ib + β (2)

when the maximum response is that of the i-th neuron,
and

W t+1

if = (1 − β) ∗ W t
if + β (3)



W t+1

ib = (1 − β) ∗ W t
ib (4)

if the maximum response is not that of the j-th neuron,
where:
• W t

ib - value of the weight between the i-th pattern
neuron and the background summation neuron at
time t,

• W t
if - value of the weight between the i-th pattern

neuron and the foreground summation neuron at
time t,

• β - learning rate.
Equations 1-4 express the notion that whenever an

instance pertinent to a pattern neuron is encountered,
the probability that that pattern neuron is activated by
a feature value vector belonging to the background is
increased. Naturally, if that is the case, the proba-
bility that the pattern neuron is excited by a pattern
belonging to foreground is decreased. Vice versa, the
more seldom a feature vector value corresponding to a
pattern neuron is encountered the more likely it is that
the patterns represented by it belong to foreground ob-
jects. By adjusting the learning rates, it is possible to
control the speed of the learning process.

The output of the classification subnet indicates
whether the output of the background summation neu-
ron is higher than that of the foreground summation
neuron, i.e. that it is more probable that the input fea-
ture value is due to a background object rather than a
foreground object.

The activation and replacement subnets are
Winner-Take-All (WTA) neural networks. A WTA
network is a parallel and fast way to determine mini-
mum or the maximum of a set of values, consistent
with the task of doing so within a neural-network
based solution. In particular, these subnets are ex-
tensions of one-layer feedforward MAXNET (1LF-
MAXNET) proposed in (Kwan, 1992).

The activation subnet performs a dual function: it
determines which of the neurons of the network has
maximum activation (output) and whether that value
exceeds a threshold provided as a parameter to the al-
gorithm. If it does not, the BNN is considered inactive
and replacement of a pattern neuron’s weights with
the values of the current input vector is required. If
this is the case, the feature is considered to belong to
a foreground object.

The first layer of this network has the structure of a
1LF-MAXNET network and a single neuron is used
to indicate whether the network is active. The output
of the neurons of the first layer of the network can be
expressed in the form of the following equation:

Yj = Xj ×

P
∏

i=1

{F (Xj − Xi|i 6= j)} (5)

where:

F (z) =

{

1, if z ≥ 0;
0, if z < 0; (6)

The output of the first layer of the activation subnet
will differ from 0 only for the neurons with maxi-
mum activation and will be equal to the maximum ac-
tivation. In Figure 1 these outputs are indicated with
Z1, , ZP . Figure 3 shows the inner structure of a neu-
ron in the first layer of the subnet. A single neuron in

Figure 3: Structure of processing neurons of the activation
subnet.

the second layer of the activation subnet is concerned
with detecting whether the BNN is active or not and
its function can be expressed in the form of the fol-
lowing equations:

NA = F (

P
∑

i=1

Zi − θ) (7)

whereF is given by Equation 6 andθ is the activa-
tion threshold, which is provided to the network as a
parameter. Finally, the replacement subnet in Figure
1 can be viewed as a separate neural net with the unit
input. However, it is inextricably related to the clas-
sification subnet since each of the replacement sub-
net first-layer neurons is connected with the input via
synapses that have the same weight as the two out-
put synapses between the pattern and summation neu-
rons of the classification subnet. Each pattern neuron
has a corresponding neuron in the replacement net.
The function of the replacement net is to determine
the pattern neuron that minimizes the criterion for re-
placement, expressed by the following equation:

replacement criterion = W t
if + |W t

ib − WT
if | (8)

The criterion is a mathematical expression of the idea
that those patterns that are least likely to belong to the
background and those that provide least confidence
to make the decision should be eliminated from the
model.

The neurons of the first layer calculate the negated
value of the replacement criterion for the pattern neu-
ron they correspond to. The second layer is a 1LF-
MAXNET that yields non-zero output corresponding
to the pattern neuron to be replaced.



(a) (b)

(c) (d)

Figure 4: Results obtained for representative frames: (a-b) two consecutive frames from the original sequence, (c-d) segmen-
tation results obtained for the two frames shown.

To form a complete background-subtraction solu-
tion a single instance of a BNN is used to model the
features at each pixel of the image.

4 EXPERIMENTS AND RESULTS

The approach is intended to serve as basis for the de-
sign of a hardware component, which would be able
to exploit its highly parallel nature. However, to eval-
uate the approach, a simulation application, which
can be run on a typical PC, has been developed. While
this simulation is sequential in its execution and can-
not provide a valid estimate of the speed of the target
hardware system, it can demonstrate the segmentation
ability of the system. The primary sequence used for
testing is a maritime environment sequence. The se-
quence is that of a port inlet, taken by a static camera.
The sequence consists of 18230 frames of 720x480
pixels, corresponding to a bit more than 10 minutes
of recording at 30 frames per second. It contains
a large number of diverse vessels, in terms both of
color and size, moving at different rates, in different
directions and at different distance from the camera.

The sequence is also complex in terms of background
changes related to the water-surface.

Two consecutive frames from the sequence as well
as the results of segmentation are given in Figure 4.
Grey pixels correspond to the foreground. No mor-
phological operations, typically used to remove spu-
rious one pixel effects and make the object solid, have
been performed on the segmentation images shown in
Figure 4.

Figure 5, however, shows the same segmentation
results when a morphological open and then mor-
phological close operation are applied. The sup-
port region for the operations is a two pixel wide
square. Morphological transformations are currently
performed as a post-processing step, but will ulti-
mately be implemented as a neural network.

A detail of the first frame of the original sequence
(shown in figure 4(a)) containing several small objects
as well as the segmentation result for that part of the
frame with and without morphological operations ap-
plied is shown enlarged in Figure 6. Light grey pixels
are classified as foreground due to the BNNs recog-
nizing that these are new values not yet stored, while
the dark grey ones are stored but classified as fore-



(a) (b)

Figure 5: Results obtained for representative frames with the employment of morphological opening and closing.

(a) (b) (c)

Figure 6: Details of: (a) a frame of the original sequence, (b) segmentation result and (c) segmentation result enhanced using
morphological operations.

ground based on the learned PDFs.
The neural networks used in the experiments are

fairly simple. The simulation application implements
BNNs containing 20 processing, two summation and
one output neuron per pixel in the classification sub-
net. The activation and replacement subnet attribute
for additional 20, i.e. 41 processing units respectively,
bringing up the total of neurons used per pixel to 84.
The input neurons of the classification shown in Fig-
ure 1 just map the input to the output and need not be
implemented as such.

The learning rate (β) of the networks was set to
0.005 and the smoothing parameter (σ) for the clas-
sification subnet used was set to 10. The activation
threshold (θ) of the activation subnet was set to 0.95.

The performance of the simulation application al-
lows for efficient experimenting. It is capable of
processing a single frame of size 720×480 in 2.25
seconds on average, which translates to 8 frames of
160×120 pixels per second or 2.2 frames per second
(fps) for images sized 320×240 pixels, on a 3.0 GHz
Pentium IV based system.

While the experiments conducted prove the capa-
bility of the system to segment the foreground objects,
the main goal of the research presented is to achieve
real-time segmentation, using a hardware-based so-

lution. In a hardware implementation the delay of
the network (segmentation time) corresponds to the
time needed by the signal to propagate through the
network and time required to update it. In a typ-
ical FPGA implementation this can be done in less
than 20 clock cycles, which corresponds to a 2ms de-
lay through the network, for a FPGA core running at
100ns clock rate. Thus, the networks themselves are
capable of achieving a throughput of some 500 fps,
which is more than sufficient for real-time segmenta-
tion of video sequences.

5 CONCLUSION AND FURTHER
RESEARCH

Object segmentation is a fundamental task in several
important domains of video processing. The com-
plexity of captured and stored video material is on
the rise and current motion based segmentation algo-
rithms are not capable of handling high-resolution se-
quences in real time. The possibility of resolving this
problem through a highly parallelized approach is the
focus of the research presented.

The research resulted in a new motion based ob-



ject segmentation and background modeling algo-
rithm, proposed here. It is parallelized at sub-pixel
level. The basis of the approach is employment of
a novel neural network architecture designed specifi-
cally to serve as a model of background in video se-
quences and a Bayesian classifier to be used for ob-
ject segmentation. The new Background Modeling
Neural Network is an unsupervised classifier, differ-
ing from the approaches published before. The pro-
posed model is independent of the features used and
general since it does not impose restrictions in terms
of the probability density functions estimated.

A PC based system has been developed to evalu-
ate the algorithm using a complex maritime sequence.
The results obtained through these experiments are il-
lustrated in the paper via representative frames.

Full exploitation of the algorithm’s parallelism can
be achieved only if the system is implemented in hard-
ware, allowing for highly-parallelized execution.

The speed of PC based system and the projected
speed of a hardware component implemented as an
FPGA is discussed.

Future work will proceed in several directions: Use
of features different than RGB values will be explored
to evaluate the impact of the choice of features on the
performance of the system. Methods to enhance the
segmentation, other than morphological transforma-
tions, will be explored (e.g. single frame color-based
segmentation, depth cues from stereo sequences). Fi-
nally, development of a FPGA based system which
would achieve real time segmentation of HDTV and
QuadHDTV sequences will be explored.
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