
Computer Network Programming

Intro to Sockets

Dr. Sam Hsu
Computer Science & Engineering

Florida Atlantic University

2

Intro to Sockets

The Client/Server Model
Layered Network Structure
Sockets
Internet Addressing
Protocol Port Numbers
Socket Programming
Network Byte Order
Connectionless/Connection-oriented Examples

3

The Client/Server Model

request

response
ClientClientServer

Closes server connection. Closes client connection.
(Goes back to sleep: iterative).

Waits for server reply, sends results to
user, sends another user request …

Handles client request, sends back
reply …

Upon receiving user request,
contacts server, sends request on
user’s behalf.

When contacted by client,
calls/creates a handler to handle.
(Goes back to sleep: concurrent)

Waits for user input.Goes to sleep waiting for client to
connect.

Starts and initializes.Starts and initializes.

4

Client/Server on an LAN

5

Client/Server via a WAN

6

OSI vs. Internet Protocol Layers

7

Protocol Data and Headers

Socket
Struct

User Data

TCP/UDP
Header

TCP/UDP Data

IP
Header

IP Data

Frame
Header

Network Frame Data Frame
Tail

(Link)

(Internet/Network)

(Transport)

Socket Layer

TCP or UDP Layer

Network Layer

(Application)

IP Layer

8

What Is A Socket? (1/2)

A socket is a communication end
point.

Is equivalent to a computer's network
(hardware) interface.

Allows a network application to "plug
into" the network (not physically, but
metaphorically).

9

What Is A Socket? (2/2)

Is a network programming interface.

It is used for interprocess communication
over the network.

It is used by a process to communicate
with a remote system via a transport
protocol.

It needs an IP address and a port number.

10

Sockets Came From Berkeley UNIX

Sockets were first introduced in
Berkeley UNIX.

An extension of the UNIX abstraction of file
I/O concepts.

Now are commonly supported in almost
all modern operating systems for inter-
systems communications.

11

Popular in Client/Server Computing

Sockets are popularly used in
client/server computing.

Provides two major types of services:

Connection-oriented

Connectionless

12

Connection-Oriented Services (1/2)

Implemented on TCP

Short for Transmission Control Protocol.

A connection-oriented protocol.

Data transfer unit is known as segment.

An end-to-end connection is established
before data exchange can happen.

Similar to our phone system.

13

Connection-Oriented Services (2/2)

Data bytes are delivered in sequence.

Delivery of data is guaranteed.

Connection is terminated when finished.

There are two modes:

Iterative (synchronous)

Concurrent (asynchronous)

14

Connectionless Services (1/2)
Implemented on UDP

Short for User Datagram Protocol.
A connectionless protocol.

Data transfer unit is known as datagram.

No connection is required before data
transfer.

Similar to our postal system.

15

Connectionless Services (2/2)

Data bytes may be missing or delivered
out-of-order.

There are also two modes:

Iterative (synchronous)

Concurrent (asynchronous)

16

Sockets Are Bi-directional

A socket provides a bi-directional
communication mechanism.

Two way simultaneously.

Also know as full duplex (FDX)
communication.

17

Internet Addressing

A means to identify hosts on the
Internet.

There are two popular ways:

Using IP addresses.

Using the domain name system
(DNS).

18

IP Addresses (1/2)
IP is short for Internet Protocol.

Each host on the Internet is assigned a
32-bit unique address (in current IPv4).

An IP address is assigned to a single host
only.

A host may have more than one IP address
(multi-homed host).

19

IP Addresses (2/2)
Dotted representation

Internet addresses are represented in the
form of four integers separated by decimal
points known as dotted representation.

Examples:

131.91.96.108
131.91.128.73

For readability by human.

20

The Domain Name System (1/2)
A high-level naming scheme

A sequence of characters grouped into
sections delimited by decimal points.

Labeled in a meaningful way.

Examples:

earth.cse.fau.edu
www.fau.edu

21

The Domain Name System (2/2)

The DNS naming convention is
hierarchical.

Written in the local-most level first and the
top-most level last fashion.

It is much easier to deal with DNS
names than with IP addresses.

22

Mapping DNS to IP Addresses
Delivery of information across the
Internet is done by using IP addresses.

Need to map DNS names to IP addresses
before delivery.

Three ways:

Done at system startup.
Via a local table lookup.
Going through a nameserver

23

Port Numbers
A (protocol) port is an abstraction used by
TCP/UDP to distinguish applications on a
given host.

A port is identified by a 16-bit integer known
as the port number.

Three ranges of port numbers:
Well-known ports
Registered ports
Dynamic ports

24

Well-known Ports
Port numbers ranging from 0 to 1,023.

A set of pre-assigned port numbers for specific
uses.

Port numbers are managed by ICANN.

Short for the Internet Corporation for
Assigned Names and Numbers (ICANN)

Used to be controlled solely by IANA (Internet
Assigned Numbers Authority).

25

Some Well-known Ports

File Transfer Protocol (data)FTP-DATA20

Post Office Protocol Vers. 3POP3110

X.400 Mail ServiceX400103

NIC Host Name ServerHOSTNAME101

HyperText Transfer ProtocolHTTP80

FingerFINGER79

Bootstrap ProtocolBOOTP67

Domain Name ServerDNS53

Simple Mail Transport ProtocolSMTP25

Terminal ConnectionTELNET23

Secure ShellSSH22

File Transfer Protocol (control)FTP21

Returns the date and the timeDAYTIME13

Echoes a received datagram to the senderECHO7

Reserved0

DescriptionKeywordPort

26

Registered Ports

Port numbers ranging from 1,024 to
49,151.

Not assigned or controlled by ICANN;
however their uses need to be
registered via an ICANN-accredited
registrar to prevent duplications.

27

Dynamic Ports

Port numbers ranging from 49,152 to
65,535.

Neither assigned or registered. They
can be used by anyone.

These are ephemeral ports.

Also known as private ports.

28

Socket Programming

To use a socket, one needs a structure
to hold address and its associated port
number information.

A generic socket format:

(address family, address in the family)

Another name for family is domain.

29

Generic Socket Address Structure

struct sockaddr {
sa_family_t sa_family; /* address family */
char sa_data[14]; /* socket address */

}

Note: This generic socket structure is primarily for declaring
variables. “cast” is needed in the actual use of a socket address
structure.

30

A Popular BSD-derived Socket
Implementation (1/3)

struct sockaddr_in {
sa_family_t sin_family; /* address family: AF_XXX */
in_port_t sin_port; /* 16-bit protocol port number */
struct in_addr sin_addr; /* IP addr in NW byte order */
char sin_zero[8]; /* unused, set to zero */

}
Note: One may encounter PF_XXX occasionally. It is the same as
AF_XXX at present, but is expected to be phased out later.

31

A Popular BSD-derived Socket
Implementation (2/3)

Where
sa_family_t sin_family usually holds the value
either AF_INET or AF_UNIX.
in_port_t sin_port is a 16-bit TCP or UDP port
number.

In need of htons() to convert to network byte
order.

32

A Popular BSD-derived Socket
Implementation (3/3)

in_addr sin_addr contains a 32-bit IPv4
address.

Structure for in_addr:
struct in_addr {

in_addr_t s_addr; /* 32-bit IPv4 address */
/* in network byte order */

}

In need of htonl() to convert to network byte
order.

33

Network Byte Order
Different systems may store numbers in
different byte orders internally.

For example, Sparc machines is big-endian, and
i386 is little-endian. Taking 1 as an example,

Big-endian:

Little-endian

Network byte order uses big-endian ordering.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

MSB LSB

34

Socket Types

raw socket (talk to IP directly)SOCK_RAW

sequenced packet socket (SCTP)SOCK_SEQPACKET

datagram socket (UDP)SOCK_DGRAM

stream socket (TCP)SOCK_STREAM
DescriptionFamily

35

Two Examples
A connectionless example

Algorithms for server and client.

An implementation in C.

A connection-oriented example

Algorithms for server and client.

An implementation in C.

36

Example 1: Connectionless

To illustrate a simple connectionless
client/server example.

One server (iterative), multiple clients.
The server echoes back requests from clients, one
client request at a time.
A client sends user request to server and displays
response received from server.
Programs: echo_seru.c & echo_cliu.c

It is implemented on UDP.

37

Server Algorithm (connectionless)
a) Create a socket.

b) Bind to a predefined address for the
service desired.

c) Wait for a datagram to arrive from a
client.

d) Send response back to originating client.

e) Return to c) for next client.

38

Client Algorithm (connectionless)

a) Create a socket.

b) Send a datagram to server.

c) Wait for response from server.

d) Return to b) for more datagrams.

e) Close the socket when no more
datagram to send.

39

Example 2: Connection-oriented

To illustrate a simple connection-oriented
client/server example.

Similar to the previous one: The server echoes
back requests from clients, and a client displays
server response.
However, a connection is established before data
exchange can happen.
Programs: echo_ser.c & echo_cli.c

It is implemented on TCP.

40

Server Algorithm
(connection-oriented)
a) Create a socket.

b) Bind to a predefined address for the service desired.

c) Place the socket in passive mode.

d) Accept the next connection request from a client.

e) Read a request, process the request, and send back
the results.

f) Close the connection when done with a client.

g) Return to d) for next client.

41

Client Algorithm
(connection-oriented)
a) Create a socket.

b) Connect the socket to the desired server.

c) Send a request, and wait for the response.

d) Repeat c) until done.

e) Notify server of intention to terminate.

May close R/W end either separately or together
at the same time.

f) Close the socket (connection) when done.

42

Connectionless: Functions Used

bind()
optional

bind()

recvfrom()
blocks

sendto()

sendto()recvfrom()
blocks

socket()socket()

request

response
ClientClientServer

43

Connection-oriented: Functions Used

read()write()

write() read()

close() close()

accept()
blocks

listen()

connect()
blocks

bind()

socket()socket()

request

response
ClientClientServer

44

R&W on a Closed TCP Socket

In a TCP connection, a write to a
disconnected socket will generate
SIGPIPE.

This can be dealt with a proper signal
handler.

A read from socket will return 0 if the
socket is closed.

45

A close() Call for TCP/UDP
If the socket is for SOCK_STREAM

The kernel will deliver all data received before
terminating the connection.

close() will block until all outstanding data
delivered to the receiving process.

If the socket is for SOCK_DGRAM

The socket is closed immediately.

46

TCP Client/Server Socket Functions

TCP Client
socket()

connect()

write()

read()

close()

TCP Server

socket()

listen()

bind()

accept()

Establish a queue for connections

Create a socket

Assign IP addr/Port # to the socket

EOF notification

Data (reply)

read()

write()

read()

close()

Connection closed for one client

Get a connection from the queue
(may fork a child)

Initiate a connection

Connection establishment
(TCP 3-way handshake)

Data (request)

Blocks until a connection request from client

Ref: UNP, Stevens et al, vol1, ed 3, 2004, AW, p. 96

47

UDP Client/Server Socket Functions

data (request)

recvfrom()

Send datagram to server,
with the client's address

Receive datagram from server,
with the server's address

UDP Client

socket()

sendto()

recvfrom()

close()

UDP Server
socket()

bind()

Create a socket

Assign IP addr/Port # to the socket

blocks until datagram arrives from
client

Receive datagram from client,
with the client's address

Send datagram to client,
with the server's address

data (reply) sendto()

Ref: UNP, Stevens et. al, vol 1, ed 3, 2004, AW, p. 240

48

Some Relevant Socket System
Calls and Header Files

int socket(int family, int type, int protocol);
int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
int listen(int sockfd, int backlog);
int accept(int sockfd, struct sockaddr *cliaddr, socklen_t *cliaddrlen);
int connect(int sockfd, struct sockaddr *servaddr, socklen_t *servaddrlen);
ssize_t recvfrom(int sockfd, void *buff, size_t len, int flags, struct sockaddr *from,

socklen_t *fromlen);
ssize_t sendto(int sockfd, void *msg, size_t len, int flags, struct sockaddr *to,

socklen_t tolen);
struct hostent gethostbyname(const char *name);
int shutdown(int sockfd, int howto);

<sys/socket.h>
<netinet/in.h>
<netdb.h>

49

Some References
To download textbook source code
http://www.unpbook.com/src.html

A tutorial on Networking Programming using
Sockets
http://beej.us/guide/bgnet/output/print/bgnet_USLetter.pdf

Networking Programming FAQs
http://www.faqs.org/faqs/unix-faq/socket/
http://www.uni-giessen.de/faq/archiv/unix-

faq.socket/msg00000.html

Some coding examples
http://www.xcf.berkeley.edu/~ali/K0D/UNIX/Networking/

50

Reading Assignment
Scan Chapters 1, 4, and 8

