
Computer Network Programming

I/O Multiplexing

Dr. Sam Hsu
Computer Science & Engineering

Florida Atlantic University

2

I/O Multiplexing
 I/O Models
 The select() Function
 The timeval Structure
 Ready Conditions for Descriptors
 Low Water Mark
 Stop-n-Wait vs. Batch Mode Operations
 The shutdonw() Function
 Client/Server Revisited
 The pselect() Function
 Server Designs

3

A Scenario
 Given the echo client introduced earlier

(str_cli.c) , what if it is blocked in a call to
Fgets(), and the echo server is terminated?
 The server TCP correctly sends a FIN to the client

TCP, but the client process never sees it until the
client process reads from the socket later.

 What we need here is the capability to handle
multiple I/O descriptors at the same time.
 I/O multiplexing!

4

I/O Models
 Five UNIX I/O models

 Blocking I/O
 Nonblocking I/O
 I/O multiplexing
 Signal driven I/O
 Asynchronous I/O

 Note: An input operation typically involves
two distinct phases:
 Waiting for data to be ready.
 Copying data from kernel to process.

5

Blocking I/O Model

 A process that performs an I/O operation will wait
(block) until the operation is completed.

 By default, all sockets I/Os are blocking I/Os.

6

Nonblocking I/O Model

 When a process cannot complete an I/O operation,
instead of putting the process to sleep, the kernel will
return an error (EWOULDBLOCK) to the process to
indicate the requested I/O operation not completed.

7

I/O Multiplexing Model

 For dealing with multiple I/O resources concurrently.
 Implemented using select()/poll().
 Used before actual I/O systems calls.
 Are blocking operations.

8

Signal Driven I/O Model

 A process is notified by the kernel via the SIGIO signal when
a requested I/O resource is ready.

 In need of establishing a signal handler for SIGIO.

9

Asynchronous I/O Model

 A process is notified by the kernel via a preset signal when a
requested I/O operation is complete.

 Use aio_read()/aio_write(), including a signal for notification.

10

Comparison of I/O Models

 Note: A synchronous I/O operation blocks the requesting
process, whereas an asynchronous I/O operation does not
block the requesting process, while waiting for the requested
I/O operation to complete.

11

Synchronous versus Asynchronous

 According to POSIX definitions:
 A synchronous I/O operation causes the

requesting process to be blocked until that
I/O operation completes.

 An asynchronous I/O operation does not
cause the requesting process to be
blocked.

12

The select() Function (1/2)
 Is used to tell the kernel to notify the calling

process when some event(s) of interest occurs.
 For example,

 Any descriptor in the set { 1, 2, 4} is ready for
reading.

 Any descriptor in the set { 3, 5} is ready for
writing.

 Any descriptor in the set { 2, 3, 6} has an
exception pending.

 After waiting for 5 seconds and 40 milliseconds.

13

The select() Function (2/2)

#include <sys/select.h>
#include <sys/time.h>

int select(int maxfdp1, fd_set *readset, fd_set *writeset,
fd_set *exceptset, const struct timeval *timeout);

Returns: positive count of ready descriptors, 0 on timeout, -1 on error

 Maxfdp1: max descriptor value plus 1
(total number of descriptors in all sets)
(hint: descriptor values: 0, 1, 2, …)

 Syntax:

14

The timeval Structure
 Syntax:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /*microseconds */

}
 Three uses for select():

 Wait forever if the structure pointer is NULL.
 Wait up to tv_sec and tv_usec.
 No wait if both tv_sec and tv_usec set to 0.

Note: The actual timeout value resolution is up to implementation.
Some Unix kernel rounds the timeout value up to a multiple of 10
ms. There may also very likely be a scheduling latency involved.

15

Supporting Functions
4 functions defined:

void FD_ZERO(fd_set *fdset);
To clear all bits in fdset.

void FD_SET(int fd, fd_set *fdset);
To turn on the bit for fd in fdset.

void FD_CLR(int fd, fd_set *fdset);
To turn off the bit for fd in fdset.

int FD_ISSET(int fd, fd_set *fdset);
To test to see if the bit for fd is on in fdset.

16

When Is A Descriptor Ready?
 Ready for read.

 A read operation will not block.
 Ready for write.

 A write operation will not block.

 Presence of exception data.
 E.g., out-of-band data received, some

control status information from a master
pseudo-terminal, etc.

17

Ready for Read
 Data received is >= read buffer low-water mark.

 Can be set using SO_RCVLOWAT.
 Default is 1 for TCP and UDP sockets.

 The read-half of the connection is closed.
 A read operation will return 0 (EOF) without blocking.

 A listening socket with an established connection.
 An accept operation on the socket will normally not block.

 A socket error is pending.
 A read operation on the socket will return an error (-1)

without blocking.

18

Ready for Write
 Available space in send buffer is >= low-water mark.

 Can be set using SO_SNDLOWAT.
 Default is 2048 for TCP and UDP sockets.

 The write-half of the connection is closed.
 A write operation will generate SIGPIPE without blocking.

 A socket using a non-blocking connect() has
completed the connection, or the connect() call has
failed.

 A socket error is pending.
 A write operation on the socket will return an error (-1)

without blocking.

19

Low-Water Mark
 The purpose of read/write low-water marks is

to give the application control over how much
data must be available for reading/writing
before select() returns readable or writable.

 Note: when a descriptor is writable,
SO_SNDLOWAT indicates the minimum available
write buffer size. One may not know how much
of the buffer is actually available to be filled.
 The same holds for a read descriptor.

20

Ready Conditions for select()

•TCP out-of-band data

••Pending error

•
•

Space available for writing
Write-half connection closed

•
•
•

Data to read
Read-half connection closed
New connection ready for
listening socket

Exception?Writable?Readable?Condition

21

Process Alternative
 The use of blocking I/O and select() can

achieve the similar behavior/effect of
nonblocking I/O. However, there is
another alternative — using processes.
 One may fork() processes and have each

process handle only one direction of I/O.
 E.g., Process 1 reads from stdin (blocking) to

network, and Process 2 reads from network
(blocking) to stdout.

 Beware of process synchronization issues.

22

str_cli() Using select() (1/2)
 select/strcliselect01.c

1 #include "unp.h"

2 void
3 str_cli(FILE *fp, int sockfd)
4 {
5 int maxfdp1;
6 fd_set rset;
7 char sendline[MAXLINE], recvline[MAXLINE];

8 FD_ZERO(&rset);
9 for (; ;) {
10 FD_SET(fileno(fp), &rset);
11 FD_SET(sockfd, &rset);
12 maxfdp1 = max(fileno(fp), sockfd) + 1;
13 Select(maxfdp1, &rset, NULL, NULL, NULL);

23

str_cli() Using select() (2/2)

14 if (FD_ISSET(sockfd, &rset)) { /* socket is readable */
15 if (Readline(sockfd, recvline, MAXLINE) == 0)
16 err_quit("str_cli: server terminated prematurely");
17 Fputs(recvline, stdout);
18 }

19 if (FD_ISSET(fileno(fp), &rset)) { /* input is readable */
20 if (Fgets(sendline, MAXLINE, fp) == NULL)
21 return; /* all done */
22 Writen(sockfd, sendline, strlen(sendline));
23 }
24 }
25 }

24

Conditions Handled in str_cli()
 If the peer TCP sends data,

the socket becomes readable,
and read() returns greater
than 0 (# of bytes read).

 If the peer TCP sends a FIN,
the socket becomes readable
and read returns 0 (EOF).

 If the peer TCP sends an
RST, the socket becomes
readable, read() returns -1,
and error contains the specific
error code.

client

socket

stdin

TCP

RST data FIN

data or
EOF

error EOF

select() for
readability
on either stdin
or socket

Ref: UNP, Stevens et. al., vol 1, ed 3, 2004, AW. P. 167.

25

Stop-and-Wait Mode Operations
 Up to this moment, all versions of str_cli()

functions operate in a stop-and-wait mode.
 A client sends a line to the server and wait for the

reply.
 Time needed for one single request/reply is one

RTT plus server’s processing time (close to zero for
our simple echo server model).
 One may use the system ping program to measure RTTs.

 It is fine for interactive use, but not a good use of
available network bandwidth.

 Use batch-mode operations to better utilize
the available high-speed network connections.

26

Some Assumptions
 Assumptions for illustration purposes:

 RTT = 8 units of time
 No server process time (0)
 Size of request = size of reply
 Full duplex data transfers

27

Illustration of Stop-and-Wait

28

Illustration of Batch Mode

 Note: Batch mode operations can be achieved easily
under Unix by just redirecting the standard input and
output.

29

The shutdown() Function

#include <sys/socket.h>

int shutdown(int sockfd, int howto);

Returns: 0 if OK, -1 on error

where howto has 3 values:
 SHUT_RD

 The read-half is closed.
 SHUT_WR

 The write-half is closed.
 SHUT_RDWR

 Both read and write halves are closed.

 Syntax:

30

close() vs. shutdown()
 As mentioned before, close() decrements the

descriptor’s reference count, and closes the
socket, thus terminating both read/write
directions of data transfer, if the count
reaches 0.

 With shutdown(), we can initiate TCP’s normal
connection termination sequence regardless
of the reference count.

31

Closing Half a TCP Connection

32

str_cli() Revisited (1/2)
 select/strcliselect02.c

1 #include "unp.h"
2 void
3 str_cli(FILE *fp, int sockfd)
4 {
5 int maxfdp1, stdineof;
6 fd_set rset;
7 char buf[MAXLINE];
8 int n;

9 stdineof = 0;
10 FD_ZERO(&rset);
11 for (; ;) {
12 if (stdineof == 0)
13 FD_SET(fileno(fp), &rset);
14 FD_SET(sockfd, &rset);
15 maxfdp1 = max(fileno(fp), sockfd) + 1;
16 Select(maxfdp1, &rset, NULL, NULL, NULL);

33

str_cli() Revisited (2/2)
17 if (FD_ISSET(sockfd, &rset)) { /* socket is readable */
18 if ((n = Read(sockfd, buf, MAXLINE)) == 0) {
19 if (stdineof == 1)
20 return; /* normal termination */
21 else
22 err_quit("str_cli: server terminated prematurely");
23 }

24 Write(fileno(stdout), buf, n);
25 }

26 if (FD_ISSET(fileno(fp), &rset)) { /* input is readable */
27 if ((n = Read(fileno(fp), buf, MAXLINE)) == 0) {
28 stdineof = 1;
29 Shutdown(sockfd, SHUT_WR); /* send FIN */
30 FD_CLR(fileno(fp), &rset);
31 continue;
32 }

33 Writen(sockfd, buf, n);
34 }
35 }
36 }

34

TCP Echo Server Revisited (1/5)
 A single server process to handle multiple clients concurrently

(using select()).
 In need of some data structures to keep track of the clients.

 client[] (client descriptor array) and rset (read descriptor set)

client[]:
[0] -1
[1] 5
[2] -1

[FD_SETSIZE-1] -1

fd0 fd1 fd2 fd3 fd4 fd5
0 0 0 1 0 1rset:

maxfd +1 = 6

stdin/stdout/stderr

listening socket

existing client
terminated client

35

TCP Echo Server Revisited (2/5)
 tcpcliserv/tcpservselect01.c

1 #include "unp.h"
2 int
3 main(int argc, char **argv)
4 {
5 int i, maxi, maxfd, listenfd, connfd, sockfd;
6 int nready, client[FD_SETSIZE];
7 ssize_t n;
8 fd_set rset, allset;
9 char buf[MAXLINE];

10 socklen_t clilen;
11 struct sockaddr_in cliaddr, servaddr;
12 listenfd = Socket(AF_INET, SOCK_STREAM, 0);
13 bzero(&servaddr, sizeof(servaddr));
14 servaddr.sin_family = AF_INET;
15 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
16 servaddr.sin_port = htons(SERV_PORT);

36

TCP Echo Server Revisited (3/5)
17 Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

18 Listen(listenfd, LISTENQ);

19 maxfd = listenfd; /* initialize */
20 maxi = -1; /* index into client[] array */
21 for (i = 0; i < FD_SETSIZE; i++)
22 client[i] = -1; /* -1 indicates available entry */
23 FD_ZERO(&allset);
24 FD_SET(listenfd, &allset);

25 for (; ;) {
26 rset = allset; /* structure assignment */
27 nready = Select(maxfd+1, &rset, NULL, NULL, NULL);

28 if (FD_ISSET(listenfd, &rset)) { /* new client connection */
29 clilen = sizeof(cliaddr);
30 connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

37

TCP Echo Server Revisited (4/5)
31 for (i = 0; i < FD_SETSIZE; i++)
32 if (client[i] < 0) {
33 client[i] = connfd; /* save descriptor */
34 break;
35 }
36 if (i == FD_SETSIZE)
37 err_quit("too many clients");

38 FD_SET(connfd, &allset); /* add new descriptor to set */
39 if (connfd > maxfd)
40 maxfd = connfd; /* for select */
41 if (i > maxi)
42 maxi = i; /* max index in client[] array */

43 if (--nready <= 0)
44 continue; /* no more readable descriptors */
45 }

38

TCP Echo Server Revisited (5/5)
46 for (i = 0; i <= maxi; i++) { /* check all clients for data */
47 if ((sockfd = client[i]) < 0)
48 continue;
49 if (FD_ISSET(sockfd, &rset)) {
50 if ((n = Read(sockfd, buf, MAXLINE)) == 0) {
51 /* connection closed by client */
52 Close(sockfd);
53 FD_CLR(sockfd, &allset);
54 client[i] = -1;
55 } else
56 Writen(sockfd, buf, n);

57 if (--nready <= 0)
58 break; /* no more readable descriptors */
59 }
60 }
61 }
62 }

39

DOS Attacks
 Weakness of the TCP echo server — vulnerable to

denial-of-service (DOS) attacks.
 Attack scenario:

 A malicious client sends 1 byte of data (without a newline).
 Server hangs until the client either sends a newline or

terminates.

 Possible solutions:
 Use nonblocking I/O for the server listening socket.
 Have each client served by a separate process/thread.
 Place a timeout on the I/O operations

40

The pselect() Function (1/2)

#include <sys/select.h>
#include <signal.h>
#include <sys/time.h>

int pselect(int maxfdp1, fd_set *readset, fd_set *writeset,
fd_set *exceptset, const struct timespec *timeout
const sigset_t *sigmask);

Returns: count of ready descriptors, 0 on timeout, -1 on error

 timeout: It records time in seconds and nanoseconds.
 sigmask: A pointer to a signal mask, allowing the

program some signal handling capabilities.

 The POSIX version of select()

41

The pselect() Function (2/2)
if (intr_flag)

handle_intr(); /* handle signal */

if ((nready = select (...))< 0) {
if (errno == EINTR) {

if (intr_flag)
handle_intr();

}
....

}

Signal gets lost if select() blocks
forever.

sigset_t newmask, oldmask, zeromask;

sigemptyset (&zeromask);
sigemptyset (&newmask);
sigaddset (&newmask, SIGINT);

sigprocmask (SIG_BLOCK, &newmask,
&oldmask); /*block SIGINT */

if (intr_flag)
handle_intr(); /* handle the signal */

if ((nready = pselect (... , &zeromask)) < 0)
{
if (errno == EINTR) {

if (intr_flag)
handle_intr();

}
....}

42

More on Servers
 A server may be designed/developed in

several different ways:
 Iterative
 Concurrent
 Preforked
 Threaded
 Prethreaded

43

Iterative Servers
 Loop around to serve only one client at

a time.
 Other clients block while one is being

serviced.
 It is simple to develop one, but limited

usefulness.
 Only useful for very simple services where

the time to serve a client request is very
short (e.g., a daytime server).

44

Concurrent Servers
 Use fork() to serve each client.

 The server will not wait for a client to finish
before it starts serving another client.

 There will be some operating system
overhead for fork().

 Good for “medium load” servers.
 A lot of servers are programmed this way.

45

Preforked Servers
 On startup, a server fork()s a configured

number of worker processes.
 When a client connection request arrives, it

will be served by an already fork()ed
process right away.

 Good for a “heavy load” server.
 The apache Web server is general

configured this way.

46

Threaded Servers
 Another type of concurrent servers.

 Create a thread, instead of using fork(), to handle
a client connection request.

 Threads have much lower overhead than
processes.
 Threads are also called light weight processes

(LWP).

 Threaded servers may not be portable.
 Not all systems support threads.

47

Prethreaded Servers
 Similar concept as preforked servers.

 Precreate a configured number of worker threads,
instead of processes, upon startup.
 Prethreading amortize the overhead of thread creations

all at once, similar to preforking.

 Threaded servers have lower overhead in
creation time, but are more complex to deal
with than forked servers.
 Thread synchronization is a major concern in

design.

48

Reading Assignment
 Read Chapters 6, and 16.

