
Computer Network Programming

I/O Multiplexing

Dr. Sam Hsu
Computer Science & Engineering

Florida Atlantic University

2

I/O Multiplexing
 I/O Models
 The select() Function
 The timeval Structure
 Ready Conditions for Descriptors
 Low Water Mark
 Stop-n-Wait vs. Batch Mode Operations
 The shutdonw() Function
 Client/Server Revisited
 The pselect() Function
 Server Designs

3

A Scenario
 Given the echo client introduced earlier

(str_cli.c) , what if it is blocked in a call to
Fgets(), and the echo server is terminated?
 The server TCP correctly sends a FIN to the client

TCP, but the client process never sees it until the
client process reads from the socket later.

 What we need here is the capability to handle
multiple I/O descriptors at the same time.
 I/O multiplexing!

4

I/O Models
 Five UNIX I/O models

 Blocking I/O
 Nonblocking I/O
 I/O multiplexing
 Signal driven I/O
 Asynchronous I/O

 Note: An input operation typically involves
two distinct phases:
 Waiting for data to be ready.
 Copying data from kernel to process.

5

Blocking I/O Model

 A process that performs an I/O operation will wait
(block) until the operation is completed.

 By default, all sockets I/Os are blocking I/Os.

6

Nonblocking I/O Model

 When a process cannot complete an I/O operation,
instead of putting the process to sleep, the kernel will
return an error (EWOULDBLOCK) to the process to
indicate the requested I/O operation not completed.

7

I/O Multiplexing Model

 For dealing with multiple I/O resources concurrently.
 Implemented using select()/poll().
 Used before actual I/O systems calls.
 Are blocking operations.

8

Signal Driven I/O Model

 A process is notified by the kernel via the SIGIO signal when
a requested I/O resource is ready.

 In need of establishing a signal handler for SIGIO.

9

Asynchronous I/O Model

 A process is notified by the kernel via a preset signal when a
requested I/O operation is complete.

 Use aio_read()/aio_write(), including a signal for notification.

10

Comparison of I/O Models

 Note: A synchronous I/O operation blocks the requesting
process, whereas an asynchronous I/O operation does not
block the requesting process, while waiting for the requested
I/O operation to complete.

11

Synchronous versus Asynchronous

 According to POSIX definitions:
 A synchronous I/O operation causes the

requesting process to be blocked until that
I/O operation completes.

 An asynchronous I/O operation does not
cause the requesting process to be
blocked.

12

The select() Function (1/2)
 Is used to tell the kernel to notify the calling

process when some event(s) of interest occurs.
 For example,

 Any descriptor in the set { 1, 2, 4} is ready for
reading.

 Any descriptor in the set { 3, 5} is ready for
writing.

 Any descriptor in the set { 2, 3, 6} has an
exception pending.

 After waiting for 5 seconds and 40 milliseconds.

13

The select() Function (2/2)

#include <sys/select.h>
#include <sys/time.h>

int select(int maxfdp1, fd_set *readset, fd_set *writeset,
fd_set *exceptset, const struct timeval *timeout);

Returns: positive count of ready descriptors, 0 on timeout, -1 on error

 Maxfdp1: max descriptor value plus 1
(total number of descriptors in all sets)
(hint: descriptor values: 0, 1, 2, …)

 Syntax:

14

The timeval Structure
 Syntax:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /*microseconds */

}
 Three uses for select():

 Wait forever if the structure pointer is NULL.
 Wait up to tv_sec and tv_usec.
 No wait if both tv_sec and tv_usec set to 0.

Note: The actual timeout value resolution is up to implementation.
Some Unix kernel rounds the timeout value up to a multiple of 10
ms. There may also very likely be a scheduling latency involved.

15

Supporting Functions
4 functions defined:

void FD_ZERO(fd_set *fdset);
To clear all bits in fdset.

void FD_SET(int fd, fd_set *fdset);
To turn on the bit for fd in fdset.

void FD_CLR(int fd, fd_set *fdset);
To turn off the bit for fd in fdset.

int FD_ISSET(int fd, fd_set *fdset);
To test to see if the bit for fd is on in fdset.

16

When Is A Descriptor Ready?
 Ready for read.

 A read operation will not block.
 Ready for write.

 A write operation will not block.

 Presence of exception data.
 E.g., out-of-band data received, some

control status information from a master
pseudo-terminal, etc.

17

Ready for Read
 Data received is >= read buffer low-water mark.

 Can be set using SO_RCVLOWAT.
 Default is 1 for TCP and UDP sockets.

 The read-half of the connection is closed.
 A read operation will return 0 (EOF) without blocking.

 A listening socket with an established connection.
 An accept operation on the socket will normally not block.

 A socket error is pending.
 A read operation on the socket will return an error (-1)

without blocking.

18

Ready for Write
 Available space in send buffer is >= low-water mark.

 Can be set using SO_SNDLOWAT.
 Default is 2048 for TCP and UDP sockets.

 The write-half of the connection is closed.
 A write operation will generate SIGPIPE without blocking.

 A socket using a non-blocking connect() has
completed the connection, or the connect() call has
failed.

 A socket error is pending.
 A write operation on the socket will return an error (-1)

without blocking.

19

Low-Water Mark
 The purpose of read/write low-water marks is

to give the application control over how much
data must be available for reading/writing
before select() returns readable or writable.

 Note: when a descriptor is writable,
SO_SNDLOWAT indicates the minimum available
write buffer size. One may not know how much
of the buffer is actually available to be filled.
 The same holds for a read descriptor.

20

Ready Conditions for select()

•TCP out-of-band data

••Pending error

•
•

Space available for writing
Write-half connection closed

•
•
•

Data to read
Read-half connection closed
New connection ready for
listening socket

Exception?Writable?Readable?Condition

21

Process Alternative
 The use of blocking I/O and select() can

achieve the similar behavior/effect of
nonblocking I/O. However, there is
another alternative — using processes.
 One may fork() processes and have each

process handle only one direction of I/O.
 E.g., Process 1 reads from stdin (blocking) to

network, and Process 2 reads from network
(blocking) to stdout.

 Beware of process synchronization issues.

22

str_cli() Using select() (1/2)
 select/strcliselect01.c

1 #include "unp.h"

2 void
3 str_cli(FILE *fp, int sockfd)
4 {
5 int maxfdp1;
6 fd_set rset;
7 char sendline[MAXLINE], recvline[MAXLINE];

8 FD_ZERO(&rset);
9 for (; ;) {
10 FD_SET(fileno(fp), &rset);
11 FD_SET(sockfd, &rset);
12 maxfdp1 = max(fileno(fp), sockfd) + 1;
13 Select(maxfdp1, &rset, NULL, NULL, NULL);

23

str_cli() Using select() (2/2)

14 if (FD_ISSET(sockfd, &rset)) { /* socket is readable */
15 if (Readline(sockfd, recvline, MAXLINE) == 0)
16 err_quit("str_cli: server terminated prematurely");
17 Fputs(recvline, stdout);
18 }

19 if (FD_ISSET(fileno(fp), &rset)) { /* input is readable */
20 if (Fgets(sendline, MAXLINE, fp) == NULL)
21 return; /* all done */
22 Writen(sockfd, sendline, strlen(sendline));
23 }
24 }
25 }

24

Conditions Handled in str_cli()
 If the peer TCP sends data,

the socket becomes readable,
and read() returns greater
than 0 (# of bytes read).

 If the peer TCP sends a FIN,
the socket becomes readable
and read returns 0 (EOF).

 If the peer TCP sends an
RST, the socket becomes
readable, read() returns -1,
and error contains the specific
error code.

client

socket

stdin

TCP

RST data FIN

data or
EOF

error EOF

select() for
readability
on either stdin
or socket

Ref: UNP, Stevens et. al., vol 1, ed 3, 2004, AW. P. 167.

25

Stop-and-Wait Mode Operations
 Up to this moment, all versions of str_cli()

functions operate in a stop-and-wait mode.
 A client sends a line to the server and wait for the

reply.
 Time needed for one single request/reply is one

RTT plus server’s processing time (close to zero for
our simple echo server model).
 One may use the system ping program to measure RTTs.

 It is fine for interactive use, but not a good use of
available network bandwidth.

 Use batch-mode operations to better utilize
the available high-speed network connections.

26

Some Assumptions
 Assumptions for illustration purposes:

 RTT = 8 units of time
 No server process time (0)
 Size of request = size of reply
 Full duplex data transfers

27

Illustration of Stop-and-Wait

28

Illustration of Batch Mode

 Note: Batch mode operations can be achieved easily
under Unix by just redirecting the standard input and
output.

29

The shutdown() Function

#include <sys/socket.h>

int shutdown(int sockfd, int howto);

Returns: 0 if OK, -1 on error

where howto has 3 values:
 SHUT_RD

 The read-half is closed.
 SHUT_WR

 The write-half is closed.
 SHUT_RDWR

 Both read and write halves are closed.

 Syntax:

30

close() vs. shutdown()
 As mentioned before, close() decrements the

descriptor’s reference count, and closes the
socket, thus terminating both read/write
directions of data transfer, if the count
reaches 0.

 With shutdown(), we can initiate TCP’s normal
connection termination sequence regardless
of the reference count.

31

Closing Half a TCP Connection

32

str_cli() Revisited (1/2)
 select/strcliselect02.c

1 #include "unp.h"
2 void
3 str_cli(FILE *fp, int sockfd)
4 {
5 int maxfdp1, stdineof;
6 fd_set rset;
7 char buf[MAXLINE];
8 int n;

9 stdineof = 0;
10 FD_ZERO(&rset);
11 for (; ;) {
12 if (stdineof == 0)
13 FD_SET(fileno(fp), &rset);
14 FD_SET(sockfd, &rset);
15 maxfdp1 = max(fileno(fp), sockfd) + 1;
16 Select(maxfdp1, &rset, NULL, NULL, NULL);

33

str_cli() Revisited (2/2)
17 if (FD_ISSET(sockfd, &rset)) { /* socket is readable */
18 if ((n = Read(sockfd, buf, MAXLINE)) == 0) {
19 if (stdineof == 1)
20 return; /* normal termination */
21 else
22 err_quit("str_cli: server terminated prematurely");
23 }

24 Write(fileno(stdout), buf, n);
25 }

26 if (FD_ISSET(fileno(fp), &rset)) { /* input is readable */
27 if ((n = Read(fileno(fp), buf, MAXLINE)) == 0) {
28 stdineof = 1;
29 Shutdown(sockfd, SHUT_WR); /* send FIN */
30 FD_CLR(fileno(fp), &rset);
31 continue;
32 }

33 Writen(sockfd, buf, n);
34 }
35 }
36 }

34

TCP Echo Server Revisited (1/5)
 A single server process to handle multiple clients concurrently

(using select()).
 In need of some data structures to keep track of the clients.

 client[] (client descriptor array) and rset (read descriptor set)

client[]:
[0] -1
[1] 5
[2] -1

[FD_SETSIZE-1] -1

fd0 fd1 fd2 fd3 fd4 fd5
0 0 0 1 0 1rset:

maxfd +1 = 6

stdin/stdout/stderr

listening socket

existing client
terminated client

35

TCP Echo Server Revisited (2/5)
 tcpcliserv/tcpservselect01.c

1 #include "unp.h"
2 int
3 main(int argc, char **argv)
4 {
5 int i, maxi, maxfd, listenfd, connfd, sockfd;
6 int nready, client[FD_SETSIZE];
7 ssize_t n;
8 fd_set rset, allset;
9 char buf[MAXLINE];

10 socklen_t clilen;
11 struct sockaddr_in cliaddr, servaddr;
12 listenfd = Socket(AF_INET, SOCK_STREAM, 0);
13 bzero(&servaddr, sizeof(servaddr));
14 servaddr.sin_family = AF_INET;
15 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
16 servaddr.sin_port = htons(SERV_PORT);

36

TCP Echo Server Revisited (3/5)
17 Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

18 Listen(listenfd, LISTENQ);

19 maxfd = listenfd; /* initialize */
20 maxi = -1; /* index into client[] array */
21 for (i = 0; i < FD_SETSIZE; i++)
22 client[i] = -1; /* -1 indicates available entry */
23 FD_ZERO(&allset);
24 FD_SET(listenfd, &allset);

25 for (; ;) {
26 rset = allset; /* structure assignment */
27 nready = Select(maxfd+1, &rset, NULL, NULL, NULL);

28 if (FD_ISSET(listenfd, &rset)) { /* new client connection */
29 clilen = sizeof(cliaddr);
30 connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

37

TCP Echo Server Revisited (4/5)
31 for (i = 0; i < FD_SETSIZE; i++)
32 if (client[i] < 0) {
33 client[i] = connfd; /* save descriptor */
34 break;
35 }
36 if (i == FD_SETSIZE)
37 err_quit("too many clients");

38 FD_SET(connfd, &allset); /* add new descriptor to set */
39 if (connfd > maxfd)
40 maxfd = connfd; /* for select */
41 if (i > maxi)
42 maxi = i; /* max index in client[] array */

43 if (--nready <= 0)
44 continue; /* no more readable descriptors */
45 }

38

TCP Echo Server Revisited (5/5)
46 for (i = 0; i <= maxi; i++) { /* check all clients for data */
47 if ((sockfd = client[i]) < 0)
48 continue;
49 if (FD_ISSET(sockfd, &rset)) {
50 if ((n = Read(sockfd, buf, MAXLINE)) == 0) {
51 /* connection closed by client */
52 Close(sockfd);
53 FD_CLR(sockfd, &allset);
54 client[i] = -1;
55 } else
56 Writen(sockfd, buf, n);

57 if (--nready <= 0)
58 break; /* no more readable descriptors */
59 }
60 }
61 }
62 }

39

DOS Attacks
 Weakness of the TCP echo server — vulnerable to

denial-of-service (DOS) attacks.
 Attack scenario:

 A malicious client sends 1 byte of data (without a newline).
 Server hangs until the client either sends a newline or

terminates.

 Possible solutions:
 Use nonblocking I/O for the server listening socket.
 Have each client served by a separate process/thread.
 Place a timeout on the I/O operations

40

The pselect() Function (1/2)

#include <sys/select.h>
#include <signal.h>
#include <sys/time.h>

int pselect(int maxfdp1, fd_set *readset, fd_set *writeset,
fd_set *exceptset, const struct timespec *timeout
const sigset_t *sigmask);

Returns: count of ready descriptors, 0 on timeout, -1 on error

 timeout: It records time in seconds and nanoseconds.
 sigmask: A pointer to a signal mask, allowing the

program some signal handling capabilities.

 The POSIX version of select()

41

The pselect() Function (2/2)
if (intr_flag)

handle_intr(); /* handle signal */

if ((nready = select (...))< 0) {
if (errno == EINTR) {

if (intr_flag)
handle_intr();

}
....

}

Signal gets lost if select() blocks
forever.

sigset_t newmask, oldmask, zeromask;

sigemptyset (&zeromask);
sigemptyset (&newmask);
sigaddset (&newmask, SIGINT);

sigprocmask (SIG_BLOCK, &newmask,
&oldmask); /*block SIGINT */

if (intr_flag)
handle_intr(); /* handle the signal */

if ((nready = pselect (... , &zeromask)) < 0)
{
if (errno == EINTR) {

if (intr_flag)
handle_intr();

}
....}

42

More on Servers
 A server may be designed/developed in

several different ways:
 Iterative
 Concurrent
 Preforked
 Threaded
 Prethreaded

43

Iterative Servers
 Loop around to serve only one client at

a time.
 Other clients block while one is being

serviced.
 It is simple to develop one, but limited

usefulness.
 Only useful for very simple services where

the time to serve a client request is very
short (e.g., a daytime server).

44

Concurrent Servers
 Use fork() to serve each client.

 The server will not wait for a client to finish
before it starts serving another client.

 There will be some operating system
overhead for fork().

 Good for “medium load” servers.
 A lot of servers are programmed this way.

45

Preforked Servers
 On startup, a server fork()s a configured

number of worker processes.
 When a client connection request arrives, it

will be served by an already fork()ed
process right away.

 Good for a “heavy load” server.
 The apache Web server is general

configured this way.

46

Threaded Servers
 Another type of concurrent servers.

 Create a thread, instead of using fork(), to handle
a client connection request.

 Threads have much lower overhead than
processes.
 Threads are also called light weight processes

(LWP).

 Threaded servers may not be portable.
 Not all systems support threads.

47

Prethreaded Servers
 Similar concept as preforked servers.

 Precreate a configured number of worker threads,
instead of processes, upon startup.
 Prethreading amortize the overhead of thread creations

all at once, similar to preforking.

 Threaded servers have lower overhead in
creation time, but are more complex to deal
with than forked servers.
 Thread synchronization is a major concern in

design.

48

Reading Assignment
 Read Chapters 6, and 16.

