
Computer Network Programming

UNIX Processes

Dr. Sam Hsu
Computer Science & Engineering

Florida Atlantic University

2

UNIX Processes
Process Model
Process Creation
Process Termination
Zombie Process
Orphaned Process
Race Conditions
Process Attributes
Kernel Data Structures
Context of a Process
Process Execution

3

Typical Memory Layout of a Process (1/3)

Text segment
For instructions.

Data segment
Initialized data segment.
Uninitialized data segment.

BSS (block started by symbol)

Stack
For function calls.

4

Typical Memory Layout of a Process (2/3)

Heap
For dynamic memory allocations.

Command-line arguments
argc/argv[]/envp[]

Environment vairables
extern char **environ

5

Typical Memory Layout of a Process (3/3)

Low address

Uninitialized data

Command-line arguments
and environment variables

High address argc/argv[]

Stack

Heap

Initialized data

Text

Initialized to zero by exec()

Read from program by exec()

6

Processes
A process is a program in execution.
Each has a unique PID.

A non-negative integer: 0 ~ PID_MAX
Created by fork()/vfork() system calls.
Some special PIDs:

0: scheduler
1: init
2: pagedaemon

7

The fork() System Call (1/3)
Only way to create processes

Except for 0, 1, …
Parent/child relationship

The child is a copy of the parent.
It inherits the parent's data, heap and stack.

COW (copy-on-write) in most current
implementations.

Only the page that gets modified is copied,
typically in a virtual memory system.

8

The fork() System Call (2/3)
Often the parent and the child share the
text segment,

If it is read-only.

Never know whether the parent or child
will start executing first.

All file descriptors that are open in the
parent are duplicated in the child.

Parent/child also share the same file offset
(Files opened after fork() are not shared).

9

The fork() System Call (3/3)
Two normal cases for handling the
descriptors after a fork():

Parent waits.
Parent and child go their own way.

fork() may fail if it,
Exceeds user limit, or
Exceeds total system limit.

Two uses (reasons) for fork():
Each can execute a different sections of the code
at the same time.
One process can execute a different program.

10

The vfork() System Call
A BSD variant of fork(), now supported by SVR4.
Similar to fork(); however, is used to exec a new
program only.
Child running in the parent address space until it
calls exec()/exit().
Not fully copying the address space of the parent
into the child.
vfork() guarantees that the child runs first until it
calls exec()/exit().
Deadlock is possible if the child needs
information from the parent.

11

Process Termination
Normal termination

Return from main().
Calling exit().
Calling _exit().

Abnormal termination
Calling abort().
Terminated by a signal.

12

The exit()/_exit() System Calls
exit()

Performs a standard I/O cleanup.
Executes all registered exit handlers.
Flushes all C output buffers.
Closes all open streams.

Terminates the calling process.
_exit()

Terminates the calling process without
performing a standard I/O cleanup.

13

Various wait() System Calls (1/3)

wait() is used to wait for a child to
terminate.
waitpid() is used to wait for a specific
child to terminate, plus some options.
wait3()/wait4() will further collect
resource usage information.

14

Various wait() System Calls (2/3)

When a process terminates, the following
are reported/returned to its parent via a
wait() system call:

Exit/termination status.
Resource utilization

CPU time
Memory
Etc.

15

Various wait() System Calls (3/3)

•
•

••
•

•
••

wait3()
wait4()

•
•

•
•

•
•••

wait()
waitpid()

4.4BSDSVR4POSIX.1rusageoptionspidFunction

Arguments supported by various wait() functions on different systems.

16

Zombie Process
A process that no longer exists, but still ties
up a slot in the system process table.

A process that has terminated, but whose parent
exists and has not waited or acknowledged the
child's termination.

Zombies are to be avoided.
To wait for the child to finish.
To catch SIGCHLD in the parent.
To have the child orphaned (not encouraged).

17

Orphaned Process (orphan)
A process whose parent has exited.
An orphaned process can never become
a zombie process.
Its slot in the process table is
immediately released when an orphan
terminates.
Orphaned processes are inherited by
init().

18

Race Conditions
A race condition occurs when multiple
processes are competing for the same system
resource(s).

The final outcome depends on the order in which
the processes run.

Problems due to race conditions are hard to
debug.

Programs tend to work “most of the time.”

Needs to have process synchronization.

19

Process Attributes (1/2)
A process has the following Ids:

Process ID.
Parent Process ID.
Process group ID.
Session ID.
User ID of the process.
Group ID of the process.
Effective user ID.
Effective group ID.

20

Process Attributes (2/2)
Some other properties:

Controlling terminal.
Current working directory.
Root directory.
Open files descriptors.
File mode creation mask.
Resource limits.
Process times.

21

Two Kernel Data Structures
Pertinent to a Process

The process table entry and user (u) area.
They contain administrative information for a
process.
One each per process.

Process table entry
It keeps information always needed.

User area
It keeps information needed when running.

22

The Context of a Process
User address space.
Relevant kernel data structures:

Process table entry + u area.

Contents in hardware registers.

23

The exec() System Call (1/5)
Only way to execute processes.

In the UNIX system, fork() creates processes
and exec() executes processes. These two
system calls are very closely related. Without
exec(), no process can be executed. No fork(),
no process can be created. They make a good
team achieving most of the UNIX system
operations.

Will replace the calling process with a new
program and start execution.

24

The exec() System Call (2/5)
Brand new text, data, heap and stack
segments.

Inherits most of the process attributes of the
calling process, such as
PID and PPID.
The real and effective UID and GID that aren’t
SUID or SGID.
Open files, except those with the close-on-exec
flag set, are passed to the new program.
The file mode creation mask (umask) is passed to
the new program.

25

The exec() System Call (3/5)
Controlling terminal.
Current working directory
Root directory.
File locks.
Signal mask.
Pending signals.
Resource limits
CPU times.

26

The exec() System Call (4/5)
Is a family name for six like functions virtually
doing the same thing, only slightly different in
syntax:

execl(), execv(), execle(), execve(), execlp(), and
execvp().

Only execve() is a system call.
Meaning of different letters:
l: needs a list of arguments.
v: needs an argv[] vector (l and v are mutually exclusive).
e: needs an envp[] array.
p: needs the PATH variable to find the executable file.

27

The exec() System Call (5/5)

environPATH

argvargvargv

execlp execl execle

execvp execv execve

Relationship of the exec() functions.

28

Recommended Reading

Read Chapters 7-8, Advanced
Programming in the UNIX Environment,
by W. Richard Stevens.

