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Signals
A primitive way of doing IPC.

Are used to inform processes of 
asynchronous events.
An asynchronous event either terminates a 
process or is simply being ignored.
Arrangements can be made to trap signals. 
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Signal Generation

A signal is generated when  (not a 
complete list):

A hardware exception occurs. 
Interrupt or quit from control terminal.
An alarm timer expires.
A call to kill().
Termination of a child process.
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Signals Are Software Interrupts
Each signal has a name.

A signal is identified by a named constant 
(symbolic constant).
A set of predefined numbers: 1~MAXSIG.
Details in signal.h.

Signals may not be queued.
Implementation-dependent to recognize multiple 
instances of a signal.

Order of service is not defined when different 
signals are pending on a process.
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Use of Signals
Intraprocess
Interprocesses

With the same UID.

Between kernel to any process.
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Signal Status
A signal is said to be:

generated when the event that causes the 
signal occurs.
delivered when the action for a signal is 
taken.
pending during the time between the 
generation of the signal and its delivery.
blocked if unable to deliver due to a signal 
mask bit being set for the signal.
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Sending Signals

Signals can be sent to processes at any 
time.

By the kernel, or 
A call to kill() by the user.

However, signals are checked only 
when a process is about to return from 
the kernel mode to the user mode.
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Signal Disposition
Response to a signal, known as the disposition
of the signal, can be one of the following:

Default action  (SIG_DFL) 
Termination in general.

Ignored  (SIG_IGN)
Never posted to the process.

User-defined action
Needs a user-defined signal handler, or signal-catching 
function.
Most signals can be caught, or ignored except SIGKILL and 
SIGSTOP.



10

The signal() System Call
Syntax

void (*signal(int signo, void (*handler)(int)))(int)
Return value

The previous signal handler if OK, SIG_ERR on 
error.

Early implementation of signal() was said to 
be unreliable.

Signals could get lost.
The signal handler for a signal was reset to default 
each time the same signal occured.
A process was unable to block signals.
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Newer Versions of signal()
signal() is replaced by sigset() in newer 
versions of UNIX SV for reliability.

Syntax
void (*sigset(int signo, void (*handler)(int)))(int)

Has been further superseded by 
sigaction() in the latest implementations 
of various versions of UNIX systems.
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sigaction() Semantics
A signal handler remains installed until 
uninstalled/changed.
The delivery of a signal is blocked when its signal 
handler is being executed.

Additional signals may be blocked via sa_mask.
If a signal gets generated one or more times 
while it is blocked, it may get delivered at most 
one time in general, after the signal is unblocked.
One may impose process-wide signal 
blocking/unblocking using sigprocmask().
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Signal Masks
A signal mask is used to block signal delivery.

A blocked signal depends on the recipient process to 
unblock and handle it accordingly.

A signal mask may be implemented using an 
integer.

Positional – each bit corresponds to one signal.
Bit 1’s – the corresponding signals are being blocked.
One problem – the number of different signals can 
exceed the number of bits in an integer.

A process may query or change its signal mask by 
a call to sigprocmask().
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Signal Sets
Are used to represent multiple signals the 
number of which may exceed the number of bits 
in an integer.
To manipulate signal sets, a new data type 
known as sigset_t with the following five 
predefined functions is specified in POSIX.1:
sigemptyset()
sigfillset()
sigaddset()
sigdelset()
sigismember()
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Some Other Properties of Signals

Signal dispositions are inherited by 
child.
All signals are reset to default upon 
exec() unless  ignored.
Keyboard interrupts are ignored in 
background processes.
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Reentrant Functions
A function is considered to be reentrant if it 
can be reentered (called again) before a 
previous call finishes without causing any side 
effects.

No global data sharing for reentrant functions.
No static data structures.

Try to avoid calling non-reentrant functions in 
a signal handler.
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Slow System Calls
A system call is considered slow if it can be 
blocked for an undetermined period of time. For 
example,

Terminal I/O
pause() and wait()

A slow system call, in general, returns when a 
signal is caught and the signal handler returns.

This system call is said to be interrupted.
The interrupted system call returns –1 with errno set 
to EINTR.
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Network Programming Tips

Need to catch SIGCHLD in parent before 
fork()ing.
Need to avoid zombies by using waitpid()
correctly in a SIGCHLD handler.
Need to handle interrupted system calls 
when catching signals.
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Some Relevant System 
Calls/Functions (1/2)
kill()/raise() 

kill() sends a signal to a process or a group of 
process.
raise() sends a signal to the calling process itself.

alarm()
Is used to set a timer that will expire at a specified 
time in the future.

pause() 
Is used to suspend the calling process until a 
signal is received.
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Some Relevant System 
Calls/Functions (2/2)
sigpending()

Returns the set of signals that are blocked from 
delivery and currently pending for the calling 
process.

sigsuspend()
sigsetjmp()/siglongjmp()
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Recommended Reading

Read Chapter 10, Advanced 
Programming in the UNIX Environment, 
by W. Richard Stevens.


