
Computer Network Programming

UNIX Signals

Dr. Sam Hsu
Computer Science & Engineering

Florida Atlantic University

2

UNIX Signals
Signal Generation
Use of Signals
Signal Status
Signal Disposition
Various Signal System Calls
Signal Sets
Reentrant Functions
Slow System Calls
Network Programming Tips

3

Signals
A primitive way of doing IPC.

Are used to inform processes of
asynchronous events.
An asynchronous event either terminates a
process or is simply being ignored.
Arrangements can be made to trap signals.

4

Signal Generation

A signal is generated when (not a
complete list):

A hardware exception occurs.
Interrupt or quit from control terminal.
An alarm timer expires.
A call to kill().
Termination of a child process.

5

Signals Are Software Interrupts
Each signal has a name.

A signal is identified by a named constant
(symbolic constant).
A set of predefined numbers: 1~MAXSIG.
Details in signal.h.

Signals may not be queued.
Implementation-dependent to recognize multiple
instances of a signal.

Order of service is not defined when different
signals are pending on a process.

6

Use of Signals
Intraprocess
Interprocesses

With the same UID.

Between kernel to any process.

7

Signal Status
A signal is said to be:

generated when the event that causes the
signal occurs.
delivered when the action for a signal is
taken.
pending during the time between the
generation of the signal and its delivery.
blocked if unable to deliver due to a signal
mask bit being set for the signal.

8

Sending Signals

Signals can be sent to processes at any
time.

By the kernel, or
A call to kill() by the user.

However, signals are checked only
when a process is about to return from
the kernel mode to the user mode.

9

Signal Disposition
Response to a signal, known as the disposition
of the signal, can be one of the following:

Default action (SIG_DFL)
Termination in general.

Ignored (SIG_IGN)
Never posted to the process.

User-defined action
Needs a user-defined signal handler, or signal-catching
function.
Most signals can be caught, or ignored except SIGKILL and
SIGSTOP.

10

The signal() System Call
Syntax

void (*signal(int signo, void (*handler)(int)))(int)
Return value

The previous signal handler if OK, SIG_ERR on
error.

Early implementation of signal() was said to
be unreliable.

Signals could get lost.
The signal handler for a signal was reset to default
each time the same signal occured.
A process was unable to block signals.

11

Newer Versions of signal()
signal() is replaced by sigset() in newer
versions of UNIX SV for reliability.

Syntax
void (*sigset(int signo, void (*handler)(int)))(int)

Has been further superseded by
sigaction() in the latest implementations
of various versions of UNIX systems.

12

sigaction() Semantics
A signal handler remains installed until
uninstalled/changed.
The delivery of a signal is blocked when its signal
handler is being executed.

Additional signals may be blocked via sa_mask.
If a signal gets generated one or more times
while it is blocked, it may get delivered at most
one time in general, after the signal is unblocked.
One may impose process-wide signal
blocking/unblocking using sigprocmask().

13

Signal Masks
A signal mask is used to block signal delivery.

A blocked signal depends on the recipient process to
unblock and handle it accordingly.

A signal mask may be implemented using an
integer.

Positional – each bit corresponds to one signal.
Bit 1’s – the corresponding signals are being blocked.
One problem – the number of different signals can
exceed the number of bits in an integer.

A process may query or change its signal mask by
a call to sigprocmask().

14

Signal Sets
Are used to represent multiple signals the
number of which may exceed the number of bits
in an integer.
To manipulate signal sets, a new data type
known as sigset_t with the following five
predefined functions is specified in POSIX.1:
sigemptyset()
sigfillset()
sigaddset()
sigdelset()
sigismember()

15

Some Other Properties of Signals

Signal dispositions are inherited by
child.
All signals are reset to default upon
exec() unless ignored.
Keyboard interrupts are ignored in
background processes.

16

Reentrant Functions
A function is considered to be reentrant if it
can be reentered (called again) before a
previous call finishes without causing any side
effects.

No global data sharing for reentrant functions.
No static data structures.

Try to avoid calling non-reentrant functions in
a signal handler.

17

Slow System Calls
A system call is considered slow if it can be
blocked for an undetermined period of time. For
example,

Terminal I/O
pause() and wait()

A slow system call, in general, returns when a
signal is caught and the signal handler returns.

This system call is said to be interrupted.
The interrupted system call returns –1 with errno set
to EINTR.

18

Network Programming Tips

Need to catch SIGCHLD in parent before
fork()ing.
Need to avoid zombies by using waitpid()
correctly in a SIGCHLD handler.
Need to handle interrupted system calls
when catching signals.

19

Some Relevant System
Calls/Functions (1/2)
kill()/raise()

kill() sends a signal to a process or a group of
process.
raise() sends a signal to the calling process itself.

alarm()
Is used to set a timer that will expire at a specified
time in the future.

pause()
Is used to suspend the calling process until a
signal is received.

20

Some Relevant System
Calls/Functions (2/2)
sigpending()

Returns the set of signals that are blocked from
delivery and currently pending for the calling
process.

sigsuspend()
sigsetjmp()/siglongjmp()

21

Recommended Reading

Read Chapter 10, Advanced
Programming in the UNIX Environment,
by W. Richard Stevens.

