!'_ Computer Network Programming

UNIX Signals

Dr. Sam Hsu
Computer Science & Engineering
Florida Atlantic University



UNIX Signals

+

Signal Generation

Use of Signals

Signal Status

Signal Disposition

Various Signal System Calls
Signal Sets

Reentrant Functions

Slow System Calls

Network Programming Tips



i Signals

= A primitive way of doing IPC.

= Are used to inform processes of
asynchronous events.

= An asynchronous event either terminates a
process or is simply being ignored.

= Arrangements can be made to trap signals.



i Signal Generation

= A signal is generated when (not a
complete list):
= A hardware exception occurs.
= Interrupt or quit from control terminal.
= An alarm timer expires.
= A call to kill().
= Termination of a child process.




i Signals Are Software Interrupts

= Each signal has a name.

= A signal is identified by a named constant
(symbolic constant).

= A set of predefined numbers: 1~MAXSIG.
= Details in signal.h.

= Signals may not be queued.

« Implementation-dependent to recognize multiple
instances of a signal.

s Order of service is not defined when different
signals are pending on a process.



i Use of Signals

= Intraprocess

= Interprocesses
= With the same UID.

= Between kernel to any process.




i Signal Status

= A signal is said to be:

» generated when the event that causes the
signal occurs.

« gelivered when the action for a signal is
taken.

= pending during the time between the
generation of the signal and its delivery.

» blocked if unable to deliver due to a signal
mask bit being set for the signal.




i Sending Signals

= Signals can be sent to processes at any
time.
= By the kernel, or
= A call to kill() by the user.

= However, signals are checked only

when a process is about to return from
the kernel mode to the user mode.




i Signal Disposition

= Response to a signal, known as the disposition
of the signal, can be one of the following:

» Default action (SIG _DFL)

= Termination in general.

=« Ignored (SIG_IGN)

= Never posted to the process.

= User-defined action

= Needs a user-defined signal handler, or signal-catching
function.

= Most signals can be caught, or ignored except SIGKILL and
SIGSTOP.



i The signal() System Call

0 Syntax
void (*signal(int signo, void (*handler)(int)))(int)
= Return value
= The previous signal handler if OK, SIG_ERR on
error.
= Early implementation of signal() was said to
be unreliable.
= Signals could get lost.

= The signal handler for a signal was reset to default
each time the same signal occured.

= A process was unable to block signals.
10



i Newer Versions of signal()

= signal() is replaced by sigset() in newer
versions of UNIX SV for reliability.
= Syntax
void (*sigset(int signo, void (*handler)(int)))(int)
= Has been further superseded by
sigaction() in the latest implementations
of various versions of UNIX systems.

11



sigaction() Semantics

+

A signal handler remains installed until
uninstalled/changed.

The delivery of a signal is blocked when its signal
handler is being executed.
= Additional signals may be blocked via sa_mask.

If a signal gets generated one or more times
while it is blocked, it may get delivered at most
one time in general, after the signal is unblocked.

One may impose process-wide signal
blocking/unblocking using sigprocmask().

12



i Signal Masks

= A signal mask is used to block signal delivery.
= A blocked signal depends on the recipient process to
unblock and handle it accordingly.

= A signal mask may be implemented using an
integer.
= Positional — each bit corresponds to one signal.
= Bit I's — the corresponding signals are being blocked.
= One problem — the number of different signals can
exceed the number of bits in an integer.

= A process may query or change its signal mask by
a call to sigprocmask().

13



Signal Sets

= Are used to represent multiple signals the

number of which may exceed the number of bits
iIn an integer.

= To manipulate signal sets, a new data type
known as sigset_t with the following five

predefined functions is specified in POSIX.1:
sigemptyset()

sigfillset()

sigaddset()

sigdelset()

sigismember()

14



:LSome Other Properties of Signals

= Signal dispositions are inherited by
child.

= All signals are reset to default upon
exec() unless ignored.

= Keyboard interrupts are ignored in
background processes.

15



iReentrant Functions

= A function is considered to be reentrantif it
can be reentered (called again) before a
previous call finishes without causing any side
effects.
= No global data sharing for reentrant functions.
=« No static data structures.

= Try to avoid calling non-reentrant functions in
a signal handler.

16



iS|OW System Calls

= A system call is considered s/ow if it can be
blocked for an undetermined period of time. For
example,
= Terminal I/O
= pause() and wait()

= A slow system call, in general, returns when a
sighal is caught and the signal handler returns.
= This system call is said to be /nterrupted.

= The interrupted system call returns —7 with errno set
to EINTR.

17



iNetwork Programming Tips

= Need to catch SIGCHLD in parent before
fork()ing.

= Need to avoid zombies by using waitpid()
correctly in @ SIGCHLD handler.

= Need to handle interrupted system calls
when catching signals.

18



Some Relevant System
i Calls/Functions (1/2)

= Kill()/raise()

= Kill() sends a signal to a process or a group of
process.

= raise() sends a signal to the calling process itself.
= alarm()

» Is used to set a timer that will expire at a specified
time in the future.

= pause()

= Is used to suspend the calling process until a
signal is received.

19



Some Relevant System
Calls/Functions (2/2)

= Sigpending()

= Returns the set of signals that are blocked from

delivery and currently pending for the calling
process.

= sigsuspend()
= sigsetjmp()/siglongjmp()

20



i Recommended Reading

= Read Chapter 10, Advanced
Programming in the UNIX Environment,
by W. Richard Stevens.

21



