
Computer Network Programming

TCP Client/Server Example
Dr. Sam Hsu

Computer Science & Engineering
Florida Atlantic University

2

TCP Client/Server Example
A Simple Echo Client/Server Setting
Server Functions and Algorithms
Client Functions and Algorithms
Normal Operations
Signals
Zombies
Restart Interrupted Slow System Calls
Abnormal operations

3

Simple Echo Client/Server
A simple client/server example that performs
the following:

The client reads a line of text from its standard
input and writes the line to the server.
The server reads the line from its network input
and echoes the line back to the client.
The client reads the echoed line and displays it on
its standard output.

readline

readwriten

writen
stdout

stdin

fputs

fgets
TCP

server
TCP
client

4

Key Points in This Example
Basic concepts about implementing a
client/server system.

One may just change what the server does with
the client input to expand this example to other
applications.

To consider normal as well as boundary
conditions:

Normal and abnormal terminations.
Signals, interrupted system calls, server crash, etc.

5

TCP Echo Server main() Algorithm
A typical fork()-based concurrent server.
Algorithm outline:

Create socket.
Bind it to a designated port (supposedly to be a well-known port).
Allow incoming traffic for any local network interface (wildcard
address: INADDR_ANY).
Convert it to a listening socket.

Set up a listening queue.

Loop around forever:
Block in call to accept(), wait for a client to connect.
Spawn a child to handle each client upon successful connection.

Close listening socket.
Execute str_echo()

Close connected socket for child. ‹—— parent no wait

6

TCP Echo Server – main() (1/2)
tcpcliserv/tcpserv01.c (frist version)
1 #include "unp.h"
2 int
3 main(int argc, char **argv)
4 {
5 int listenfd, connfd;
6 pid_t childpid;
7 socklen_t clilen;
8 struct sockaddr_in cliaddr, servaddr;
9 listenfd = Socket(AF_INET, SOCK_STREAM, 0);

10 bzero(&servaddr, sizeof(servaddr));
11 servaddr.sin_family = AF_INET;
12 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
13 servaddr.sin_port = htons(SERV_PORT);

14 Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

15 Listen(listenfd, LISTENQ);

7

TCP Echo Server – main() (2/2)

16 for (; ;) {
17 clilen = sizeof(cliaddr);
18 connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

19 if ((childpid = Fork()) == 0) { /* child process */
20 Close(listenfd); /* close listening socket */
21 str_echo(connfd); /* process the request */
22 exit(0);
23 }
24 Close(connfd); /* parent closes connected socket */
25 }
26 }

8

str_echo() Algorithm
It provides very simple service for each client.

It reads data from a client and echoes it back to the
client.

Algorithm outline:
Read a buffer from the connected socket.

If n (number of characters read) > 0,
Echo back to the client (writen(): p. 89), read again.

Else if n < 0 & EINTR (got interrupt), read again.
Else just n < 0 (error occurred), display error message (and
terminate child process in err_sys()).
Else if n = 0 (receipt of FIN from client, the normal
scenario), return.

9

TCP Echo Server – str_echo()
lib/str_echo.c

1 #include "unp.h"

2 void
3 str_echo(int sockfd)
4 {
5 ssize_t n;
6 char buf[MAXLINE];

7 again:
8 while ((n = read(sockfd, buf, MAXLINE)) > 0)
9 Writen(sockfd, buf, n)

10 if ((n < 0 && errno == EINTR)
11 goto again;
12 else if (n < 0)
13 err_sys("str_echo: read error");
14 }

10

TCP Echo Client main() Algorithm
Algorithm outline:

Check number of commandline arguments.
It must be 2 (program name and server address).
Quit if not 2 (call to sys_quit()).

Open socket.
Fill in internet socket address structure.
Connect to server.
Call str_cli() to handle the rest of the client processing.
Exit when no more user input.

Note: All errors end up in termination of the client in this
function. Real applications may need to recover
differently.

11

TCP Echo Client – main()
tcpcliserv/tcpcli01.c (frist version)

1 #include "unp.h"
2 int
3 main(int argc, char **argv)
4 {
5 int sockfd;
6 struct sockaddr_in servaddr;
7 if (argc != 2)
8 err_quit("usage: tcpcli <IPaddress>");
9 sockfd = Socket(AF_INET, SOCK_STREAM, 0);
10 bzero(&servaddr, sizeof(servaddr));
11 servaddr.sin_family = AF_INET;
12 servaddr.sin_port = htons(SERV_PORT);
13 Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);
14 Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));
15 str_cli(stdin, sockfd); /* do it all */
16 exit(0);
17 }

12

TCP Echo Client – str_cli()
lib/str_cli.c

1 #include "unp.h"

2 void
3 str_cli(FILE *fp, int sockfd)
4 {
5 char sendline[MAXLINE], recvline[MAXLINE];

6 while (Fgets(sendline, MAXLINE, fp) != NULL) {

7 Writen(sockfd, sendline, strlen(sendline));

8 if (Readline(sockfd, recvline, MAXLINE) == 0)
9 err_quit("str_cli: server terminated prematurely");

10 Fputs(recvline, stdout);
11 }
12 }

13

Normal Startup (1/3)
To watch the sequence of client/server.
To start the server in background:

linux% tcpserv01 &
[1] 17870

To check the status of all sockets on a system (-a)
before the client starts:

linux% netstat –a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:9877 *:* LISTEN

Note: The output above shows only partial results, and the output
format may be different from system to system.

14

Normal Startup (2/3)
To start the client on the same machine (using the
loopback address):

linux% tcpcli01 127.0.0.1

Then, check the status of all sockets again:
linux% netstat –a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 localhost:9877 localhost:42758 ESTABLISHED
tcp 0 0 localhost:42758 localhost:9877 ESTABLISHED
tcp 0 0 *:9877 *:* LISTEN

Note: The first tcp connection is for the server child, and the second is
for the client, and the third is the server parent.

15

Normal Termination
To check the socket status right after the client
terminates:

linux% netstat –a | grep 9877
tcp 0 0 *:9877 *:* LISTEN
tcp 0 0 localhost:42758 localhost:9877 TIME_WAIT

To check again the process status:
linux% ps –t pts/6 -o pid,ppid,tty,stat,args,wchan

PID PPID TT STAT COMMAND WCHAN
22038 22036 pts/6 S -bash read_chan
17870 22038 pts/6 S ./tcpserv01 wait_for_connect
19315 17870 pts/6 S [tcpserv01 <defu do_exit

16

Signals (1/2)
A signal is a notification from the kernel to a
process that some event has happened.

It is a software interrupt.
Signals usually occur asynchronously.

A process does not know ahead of time exactly when a
signal will occur.

Signals can be sent
By one process to another (or to itself) of the same UID.
By the kernel to any process.

Signals are usually identified by a symbolic
constant.

For example, SIGINT, SIGKILL, SIGCHLD, etc.
A complete list can be found in signal.h.

17

Signals (2/2)
Each signal has a disposition.

Action associated with the signal.
Three different dispositions for signals:

Default: system defined, process gets terminated in
general.
Ignore: Signal is received, but ignored.
User-defined: Users may define their own signal
handlers to catch and process signals.
Syntax: void UserSignalHanlder(int signo);

The following signals can never be caught or
ignored:

SIGKILL, SIGSTOP.

18

signal() System Calls
Standard (historical) signal() definition
void (*signal(int signo, void (*func)(int))) (int);

New POSIX sigaction() definition
int sigaction(int signo, const struct sigaction *act,

struct sigaction *oact);
Simplified syntax of signal() by Stevens for
readability.
typedef void Sigfunc(int);
Sigfunc *signal(int signo, Sigfunc *func);

19

sigaction()–based signal()
lib/signal.c (defined by Stevens for backward compatibility)

1 #include "unp.h"
2 Sigfunc *
3 signal(int signo, Sigfunc *func)
4 {
5 struct sigaction act, oact;
6 act.sa_handler = func;
7 sigemptyset(&act.sa_mask);
8 act.sa_flags = 0;
9 if (signo == SIGALRM) {

10 #ifdef SA_INTERRUPT
11 act.sa_flags |= SA_INTERRUPT; /* SunOS 4.x */
12 #endif
13 } else {
14 #ifdef SA_RESTART
15 act.sa_flags |= SA_RESTART; /* SVR4, 44BSD */
16 #endif
17 }
18 if (sigaction(signo, &act, &oact) < 0)
19 return(SIG_ERR);
20 return(oact.sa_handler);
21 }

20

The SIGCHLD Signal
Whenever a process finishes execution, its parent will
be notified by the kernel via the SIGCHLD signal.

It is generated automatically.
The parent process will be interrupted.
The parent may choose to either ignore, go by system
default, or catch and handle the signal.

The terminated child process may result in a zombie
state if its parent does not handle the SIGCHLD signal
properly.

Information kept in a zombie state include PID, termination
status, resource utilization (CPU time, memory use, etc.) of
the child.

A zombie takes up space in the kernel.
One may run out of space if zombies are not handled in time.

21

wait()/waitpid() Functions
Are used by the parent to wait for a child (or a
specific child) process to terminate.

One way (better way) to avoid the child become a
zombie.

#include <sys/wait.h>

pid_t wait(int pid, int *statloc);

pid_t waitpid(int pid, int *statloc, int options);
Both return: process ID if OK,0 or -1 on error

22

wait()–based SIGCHLD Signal Handler
tcpcliserv/sigchldwait.c

1 #include "unp.h"

2 void
3 sig_chld(int signo)
4 {
5 pid_t pid;
6 int stat;

7 pid = wait(&stat);
8 printf("child %d terminated\n", pid);
9 return;

10 }

23

waitpid()–based SIGCHLD Signal Handler
tcpcliserv/sigchldwaitpid.c

1 #include "unp.h"
2 void
3 sig_chld(int signo)
4 {
5 pid_t pid;
6 int stat;
7 while ((pid = waitpid(-1, &stat, WNOHANG)) > 0)
8 printf("child %d terminated\n", pid);
9 return;

10 }

24

Slow System Calls
System calls are programming interface to kernel service.

They are function calls.
A slow system call is any system call that can block for an
undetermined period of time.

It may never return.
For example, accept() may never return, if no client requests
for connection.

Most networking functions fall into this category.
If a process catches a signal, while it is being blocked in a
slow system call, and the signal handler returns, the
interrupted system may return –1 with errno set to
EINTR.

This may cause problems if not handled properly.
For example, returning -1 from accept() is considered an error.

In need of restarting interrupted slow system calls.

25

Restart Interrupted System Calls
Interrupted system calls can be restarted, in general,
by setting up a restart flag in a signal handler.

SA_INTERRUPT (SunOS 4.x) or SA_RESTART (SVR4,
4.4BSD).

However, for slow system calls, one may need to do
something more, since some kernel implementations
may not restart them automatically.

A simple solution is to place the slow system call in a loop and
ignore its error return (-1) if EINTR is set at the same time.
This mechanism works fine for a lot of slow system calls such
as accept(), read(), write(), select(), open(), etc.
However, connect() can’t be handled this way.

Need to use select() to help.
This issue needs attention since a server may be
executing a slow system call when a child finishes.

26

Multiple Connections from A Client
An example showing one server with five
connections from the same client.

Server source code: tcpserv03.c
Client source code: tcpcli04.c

27

TCP Echo Client – main()
tcpcliserv/tcpcli04.c

1 #include "unp.h"
2 int
3 main(int argc, char **argv)
4 {
5 int i, sockfd[5];
6 struct sockaddr_in servaddr;
7 if (argc != 2)
8 err_quit("usage: tcpcli <IPaddress>");
9 for (i = 0; i < 5; i++) {

10 sockfd[i] = Socket(AF_INET, SOCK_STREAM, 0);
11 bzero(&servaddr, sizeof(servaddr));
12 servaddr.sin_family = AF_INET;
13 servaddr.sin_port = htons(SERV_PORT);
14 Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);
15 Connect(sockfd[i], (SA *) &servaddr, sizeof(servaddr));
16 }
17 str_cli(stdin, sockfd[0]); /* do it all */
18 exit(0);
19 }

28

Sample Run
To run the server in the background, and then start the client.

linux% tcpserv03
[1] 20419
linux% tcpcli04 127.0.0.1
Hello # user input in bold
Hello # echoed back from server
^D # Type Ctrl-D to terminate input
Child 20426 terminated # output by server

Then, type ps to check the process status:
PID TTY TIME CMD
20419 pts/6 00:00:00 tcpserv03
20421 pts/6 00:00:00 tcpserv03 <defunct>
20422 pts/6 00:00:00 tcpserv03 <defunct>
20423 pts/6 00:00:00 tcpserv03 <defunct>

One may notice that there are several zombies (defunct) there.

29

Client Termination
When the client terminates, all 5 connections
are terminated at about the same time.

Just an example for illustration purpose, may not be
practical.

30

Final TCP Server – main() (1/2)
tcpcliserv/tcpserv04.c (final version)

1 #include "unp.h"
2 int
3 main(int argc, char **argv)
4 {
5 int listenfd, connfd;
6 pid_t childpid;
7 socklen_t clilen;
8 struct sockaddr_in cliaddr, servaddr;
9 void sig_chld(int);

10 listenfd = Socket(AF_INET, SOCK_STREAM, 0);
11 bzero(&servaddr, sizeof(servaddr));
12 servaddr.sin_family = AF_INET;
13 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
14 servaddr.sin_port = htons(SERV_PORT);
15 Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

31

Final TCP Server – main() (2/2)
16 Listen(listenfd, LISTENQ);

17 Signal(SIGCHLD, sig_chld); /* must call waitpid() */

18 for (; ;) {
19 clilen = sizeof(cliaddr);
20 if ((connfd = accept(listenfd, (SA *) &cliaddr, &clilen)) < 0) {
21 if (errno == EINTR)
22 continue; /* back to for */
23 else
24 err_sys("accept error");
25 }

26 if ((childpid = Fork()) == 0) { /* child process */
27 Close(listenfd); /* close listening socket */
28 str_echo(connfd); /* process the request */
29 exit(0);
30 }
31 Close(connfd); /* parent closes connected socket */
32 }
33 }

32

connect() returns

socket()
connect() (blocks)

accept() called

SYN_RCVD

socket(),bind(),listen()
LISTEN
(passive open)

client server

ACK

SYN, ACK

RST

SYN

ESTABLISHED

Receiving an RST from client for an ESTABLISHED
connection before accept() is called.

Abort Before accept() Returns

33

Handling Aborted Connections
Handling of the aborted connection described above is
implementation-dependent.

Berkeley-derived implementations handle the aborted
connections within the server, and the server process may
never see it.

accept() does not return.
SVR4 implementations return an error to the process when
accept() returns. However, depending on implementations,
either of the following may happen:

accept() returns an errno of EPRTO (protocol error).
accept() returns an errno of ECONNABORTED (POSIX).

POSIX specifies the return to be ECONNABORTED.
Software caused connection abort.
The server can ignore the error and call accept() again.

34

Termination of TCP Server

There are two scenarios.
Crashing of the TCP server process.

What if the client continues to write to a socket
which is closed due to the termination of the
server process?

Crashing of the TCP server host.
Server host crashes, and is unreachable.
Server host crashes, but gets rebooted.
Server host is shut down by sysadm.

35

Crashing of Server Process
Is the client aware of it?
Procedure:

Terminating the server child causes the server TCP to send a FIN
to the client.

The client TCP responds with an ACK.
(The client process is blocked in fgets() waiting for user input).
TCP is then half-close.

SIGCHLD is sent to the server parent and handled correctly (due
to Signal(SIGCHLD, sig_chld)).
The client process calls Writen() to send data to the server, and
calls Readline() immediately.
The server TCP responds with an RST in response to the write.
The client process returns from Readline():

With an unexpected EOF (because of FIN), if RST is not received yet.
With ECONNRESET (connection reset by peer) if RST is already
received.

The client process then terminates.

36

SIGPIPE Signal
What if the client process ignores the error
returned from Readline() and proceeds to
write more data to its socket? (See
lib/str_cli.c)

The SIGPIPE signal will be sent to the client
process by the client kernel after it has received
an RST.
If SIGPIPE is not caught, the client process will
terminate by default with no output.
If the process catches SIGPIPE, but returns from
the signal handler, or ignores the signal, and
proceeds again, the next write operation returns
EPIPE.

37

An Example to Show SIGPIPE
To invoke tcpcli11 which has two write operations to show an
example of writing to a closed socket.

The first write to the closed socket is to solicit RST from the
server TCP.
The second write is to generate SIGPIPE from the local process.
An sample run:

linux% tcpcli11 127.0.0.1
Hi there # user input in bold
Hi there # echoed back from server

terminate server child process then
Bye # then type this line purposely
Borken pipe # output by the shell because of SIGPIPE

Note: To write to a socket which has received a FIN is OK.
However, it is an error to write to a socket hat has received an
RST.

38

str_cli() – Calling writen() Twice
tcpcliserv/str_cli11.c

1 #include "unp.h"
2 void
3 str_cli(FILE *fp, int sockfd)
4 {
5 char sendline[MAXLINE], recvline[MAXLINE];
6 while (Fgets(sendline, MAXLINE, fp) != NULL) {
7 Writen(sockfd, sendline, 1);
8 sleep(1);
9 Writen(sockfd, sendline+1, strlen(sendline)-1);

10 if (Readline(sockfd, recvline, MAXLINE) == 0)
11 err_quit("str_cli: server terminated prematurely");
12 Fputs(recvline, stdout);
13 }
14 }

39

Crashing of Server Host
What if the client is blocked in Readline() , but
the server host has crashed, or unreachable
due to some network problems?

The client TCP will continuously retransmit the
data segment for 12 times, waiting for around 9
minutes before giving up (BSD implementations).
The client process will then return with the error
ETIMEDOUT.
If some intermediate router determined that the
server host was down and responded with an
ICMP “destination unreachable” message, the
error returned will then be either
EHOSTUNREACH or ENETUNREACH.

40

Shutdown of Server Host
What happens if the TCP server host is shut down by
its sysadm personnel?

The init process on the server host will first send SIGTERM
to all processes on the system, including the TCP server
process.

This signal can be caught.
After waiting for about 5-20 seconds, init will then send
SIGKILL to all processes.

This signal can not be caught.
The server process will close all open descriptors before the
system shuts down.

A FIN will thus be sent to the client process.
The client process will then return from Readline() with
EOF.

41

Rebooting of the Server Host
What if the client is blocked in Readline() , but
the server host has rebooted from the
previous crash?

Unaware of the server situation, the TCP client will
continue to send the same data segment again.
Upon receiving a data segment from the client,
the server TCP will respond with an RST.
The client process will then return from Readline()
with the error ECONNRESET.

42

TCP Client/Server – Client’s Perspective

43

TCP Client/Server – Server’s Perspective

44

str_echo() – Adding 2 Numbers
tcpcliserv/str_echo08.c

1 #include "unp.h"
2 void
3 str_echo(int sockfd)
4 {
5 long arg1, arg2;
6 ssize_t n;
7 char line[MAXLINE];
8 for (; ;) {
9 if ((n = Readline(sockfd, line, MAXLINE)) == 0)
10 return; /* connection closed by other end */
11 if (sscanf(line, "%ld%ld", &arg1, &arg2) == 2)
12 snprintf(line, sizeof(line), "%ld\n", arg1 + arg2);
13 else
14 snprintf(line, sizeof(line), "input error\n");
15 n = strlen(line);
16 Writen(sockfd, line, n);
17 }
18 }

45

str_cli() – Sending 2 Binary Int’s
tcpcliserv/str_cli09.c

1 #include "unp.h"
2 #include "sum.h"

3 void
4 str_cli(FILE *fp, int sockfd)
5 {
6 char sendline[MAXLINE];
7 struct args args;
8 struct result result;

9 while (Fgets(sendline, MAXLINE, fp) != NULL) {

10 if (sscanf(sendline, "%ld%ld", &args.arg1, &args.arg2) != 2) {
11 printf("invalid input: %s", sendline);
12 continue;
13 }
14 Writen(sockfd, &args, sizeof(args));

15 if (Readn(sockfd, &result, sizeof(result)) == 0)
16 err_quit("str_cli: server terminated prematurely");

17 printf("%ld\n", result.sum);
18 }
19 }

46

str_echo() – Adding 2 Binary Int’s
tcpcliserv/str_echo09.c

1 #include "unp.h"
2 #include "sum.h"

3 void
4 str_echo(int sockfd)
5 {
6 ssize_t n;
7 struct args args;
8 struct result result;

9 for (; ;) {
10 if ((n = Readn(sockfd, &args, sizeof(args))) == 0)
11 return; /* connection closed by other end */

12 result.sum = args.arg1 + args.arg2;
13 Writen(sockfd, &result, sizeof(result));
14 }
15 }

47

Beware of Different Byte Orders
Due to the big-endian and little-endian implementations,
sending binary numbers between different machine
architectures may end up with different results.

An example of two big-endian SPARC machines:
solaris% tcpcli09 12.106.32.254
11 12 # user input in bold
33 # result back from server

-11 -14
-55

An example of big-endian SPARC and little-endian Intel machines:
linus% tcpcli09 206.168.112.96
1 2 # user input in bold
3 # It seems to work

-22 -77
-16777314 # oops! It does not work!

48

Reading Assignment

Read Chapter 5.

