
Computer Network Programming

TCP Overview

Dr. Sam Hsu
Computer Science & Engineering

Florida Atlantic University

2

TCP Overview
 Introduction
 TCP Segments
 Sliding Windows
 TCP Checksum
 TCP Data Transfer
 Timeout & Retransmission
 Silly Window Syndrome
 Some TCP Timers
 Congestion Control
 TCP Sequence Numbers
 TCP State Diagram

3

TCP (1/3)
 TCP is short for Transmission Control

Protocol.
 It provides a connection-oriented, reliable,

end-to-end byte stream delivery service
with the following features:
 Connection-oriented (virtual).
 Full-duplex data transfer.
 Unstructured byte stream delivery.

4

TCP (2/3)
 Buffered transfer.
 Cumulative acknowledgment.
 End-to-end flow control.
 Sender timeout and retransmission.

 TCP makes very few assumptions about
the underlying network.
 It may be employed over a variety of different

physical networks.

5

TCP (3/3)
 TCP provides end-to-end services.

 TCP is an end-to-end transport protocol. It views IP as a
mechanism that allows TCP software on a host to exchange
messages with TCP software on a remote host.

Ref: Computer Networks and Internets, 4th ., Douglas Comer, Prentice Hall, 2004,
p. 378.

6

TCP Segments
 TCP breaks a data byte stream into

segments for transmission.
 Segments may be of different sizes.
 Segments are used to:

 Establish connections.
 Transport data and acknowledgements (ACKs).
 Advertise window sizes.
 Close connections.

7

Segment Format (1/3)
 Format of a TCP segment with a TCP header

followed by data.
0 4 8 16 24 31

ECN

. . .
Data

PaddingOptions (if any)

Urgent PointerChecksum

WindowControl BitsResr’dData Offset

Acknowledgement Number

Sequence Number

Destination PortSource Port

8

Segment Format (2/3)
 Data Offset

 Four bits, used to indicate the number of 32-bit
words in the TCP header

 Also known as Header Length
 Reserved

 Three bits, initialized to all zeros
 ECN

 Three bits, used for explicit congestion notification

9

Segment Format (3/3)
 Control bits

Sender has reached end of its byte streamFIN

Synchronize sequence numbersSYN

Reset the connection RST

This segment requests a pushPSH

Acknowledgement field is validACK

Urgent pointer field is validURG

Meaning (if bit set to 1)Bit (left to right)

10

MSS
 Maximum segment size (MSS)

 MSS refers to the size of the biggest chunk
of data that can be received by the
destination.

 The size is negotiated during connection
establishment, and is determined by the
destination of the segment.
 The default is chosen otherwise.

 An MSS may be the minimum MTU along the path
or 536 octets.

11

Sliding Windows (1/2)
 TCP uses a sliding-window protocol for

end-to-end flow control.
 Window size is measured in bytes.
 Acknowledgements are cumulative.
 Employs a variable window size

mechanism.

12

Sliding Windows (2/2)
 An example of the TCP sliding widow:

Octets through 2 have been sent and acknowledged, octets 3
through 6 have been sent but not acknowledged, octets 7
through 9 have not been sent but will be sent without delay, and
octets 10 and higher cannot be sent until the window move.

current window

0 1 2 3 4 5 6 7 8 9 10 11 …

Ref: Internetworking with TCP/IP Volume I, 5th ed., Douglas Comer, Prentice Hall,
2005, p. 197.

13

Port Numbers (1/2)
 A (protocol) port is an abstraction used by

TCP to distinguish applications on a given
host.

 A port is identified by a 16-bit integer
known as the port number.

 Three ranges of port numbers:
 Well-known ports

 Ranging from 0 to 1,023.
 A set of pre-assigned port numbers for specific uses.

14

Port Numbers (2/2)
 Registered ports

 Ranging from 1,024 to 49,151.
 Not assigned or controlled by IANA; however their

uses need to be registered with IANA to prevent
duplications.

 Dynamic ports
 Ranging from 49,152 to 65,535.
 Neither assigned or registered. They can be used

by anyone.
 These are ephemeral ports.

15

TCP Checksum (1/2)
 Used to ensure integrity of data transferred.

 Applies to header as well as data.

 Formed by treating the segment as a
sequence of 16-bit integers, in network
standard byte order, adding them together
using 1's complement arithmetic, and then
taking 1's complement of the result.
 Applying the same computation algorithm at the

receiving site should result in a zero value.

16

TCP Checksum (2/2)
 In need of a pseudo IP header to

compute the TCP checksum.
 Format of the pseudo IP header:

TCP LengthProtocolZero

Destination IP Address

Source IP Address

0 8 16 31

 At the receiving end, this information is
extracted from the IP datagram carrying the
segment.

17

TCP Data Transfer (1/2)
 Application data are broken into the best sized

chunks known as segments.
 A timer is started after a segment is sent, and

retransmission will occur if the timer expires
before data in the segment has been
acknowledged.

 TCP will send an acknowledgment after
receiving a segment(s) successfully from the
other end.

 TCP acknowledgment scheme is cumulative.

18

TCP Data Transfer (2/2)
 A received segment is simply discarded if it

fails the checksum error check.
 No NACK sent, just wait for timeout.

 TCP will resequence segments if necessary.
 For segments received out of order.

 Duplicate data are discarded.
 TCP adjusts available window size dynamically

to enforce end-to-end flow control.
 A variable window size mechanism.

19

Timeout & Retransmission (1/3)
 An adaptive retransmission algorithm

 RTT = (  Old_RTT) + ((1 - ) 
New_Round_Trip_Sample)

 timeout =  RTT
 new_timeout =   timeout

Note: , , and  values are usually 0.9, 2,
and 2 respectively.

20

Timeout & Retransmission (2/3)
 Due to a wide range of variation in delay in

computing mean RTT, a better way of
estimating RTT and computing timeout,
taking variance in delay into consideration,
is specified as follows:
 DIFF = New_Round_Trip_Sample - Old_RTT
 RTT = Old_RTT +  * DIFF
 DEV = Old_DEV +  * (|DIFF| - Old_DEV)

 timeout = RTT +  * DEV

21

Timeout & Retransmission (3/3)
where

 , , and  are recommended to be 1/23,
1/22 and 4 respectively.

Note that the following still applies:
 new_timeout =   timeout

22

Ambiguity in Retransmission
 Retransmission ambiguity problems

 An acknowledgement received after a
retransmission is activated may be
ambiguous:
 For which segment is this ACK for?

 The original segment or the retransmitted one?

 One solution: Use Karn's algorithm to avoid
the ambiguity.

23

Karn's Algorithm
 When a retransmission occurs, don't update

the current RTT until a new segment is sent
and also ACK’ed successfully without a
retransmission.
 However, the new timeout value will be

recomputed for each retransmission of the segment
using a backoff strategy and this value is also
retained for the subsequent new segment after the
current retransmitted segment is ACK’ed
 A different timeout value will thus be recomputed using

the new RTT upon a successful transmission of a new
segment without a retransmission.

24

Silly Window Syndrome (1/2)
 A situation in which small amounts of

data are exchanged across the network.
 Very inefficient use of the network

resources.

 It could be caused by either end.
 The receiver can advertise small windows.
 The sender can transmit small amounts of

data.

25

Silly Window Syndrome (2/2)
 To avoid this,

 The receiver must not advertise small
segments.

 The sender tries not to send data smaller
than a full-sized segment.

 Some algorithms to solve this problem:
 Nagle's algorithm (for the sender)
 Clark's algorithm (for the receiver)
 Delayed acknowledgement (for the receiver)

26

Response to Congestion (1/4)
 Congestion is a condition of severe delay

caused by an overload in some part of the
network.
 Delay may lead to retransmissions of segments due

to timeouts; however, retransmissions aggravate
congestion instead of alleviating it.

 If unchecked, the increased traffic will produce
increased delay which, in turn, will generate more
traffic, and so on, until the network ends up in
congestion collapse.

27

Response to Congestion (2/4)
 TCP uses two window size limits.

 Receiver window advertisement.
 Congestion window.

 However, actual window size used in
transferring segments is:
 Actual_window = min(receiver_advertisement,

congestion_window)

28

Response to Congestion (3/4)
 TCP uses two techniques to avoid

congestion
 Multiplicative decrease.

Upon loss of a segment, reduce the congestion
window by half (down to a minimum of at least
one segment). For those segments that remain
in the allowed window, backoff the
retransmission timer exponentially.

29

Response to Congestion (4/4)
 Slow start

Whenever starting traffic on a new connection or
increasing traffic after a period of congestion,
start the congestion window at the size of a
single segment and increase the congestion
window by one segment each time an
acknowledgement arrives.

Ref: Internetworking with TCP/IP Volume I, 5th ed., Douglas Comer, Prentice Hall,
2005, pp. 212-213.

30

Random Early Detection (1/4)
 Random Early Detection (RED) is also

known as Random early Discard, or
Random Early Drop.

 RED is for a better TCP performance in
case of buffer overflows.
 A router drops arriving datagrams when its

input queue overflows.
 A technique know as tail-drop policy.

 If the datagrams dropped came from a single
TCP connection, the drops may cause it to
enter slow-start.

31

Random Early Detection (2/4)
 If the datagrams dropped came from many TCP

connections, the drops may cause many TCP
connections to enter slow-start.
 This can cause global synchronization problem to

occur.

 RED is designed to avoid the global
synchronization problem.

32

Random Early Detection (3/4)
 How RED works?

 Two threshold values, Tmin and Tmax are used
to mark the positions in the queue of a router.

 When a new datagram arrives at the queue,
 If the queue currently contains fewer than Tmin

datagrams, add the new arrival to the queue.
 If the queue currently contains more than Tmax

datagrams, discard the new arrival.
 If the queue currently contains between Tmin and

Tmax datagrams, randomly discard the new arrival
based on a probability p.

33

Random Early Detection (4/4)
 RED computes a weighted average queue size, avg, in

octets to determine the probability p, for the arriving
datagram.

avg = (1 - ) * Old_avg +  * Current_queue_size
where

 is a value between 0 and 1.

Note: If  is small enough, the weighted average will
track long term trends, but will remain immune to short data
bursts. A suggested value for  is 0.002.

 In essence, RED is an active queue management
algorithm and also a congestion avoidance
algorithm.

34

Some TCP Timers (1/4)
 Persistence timer

 What if an ACK with the Window field set to
non-zero following an ACK with the Window
field set to zero, is lost?
 Deadlock may occur.

 To avoid this, a persistence timer is set
after an ACK with a window size of zero is
received.

35

Some TCP Timers (2/4)
 The sending TCP will send a special

segment called a probe when the
persistence timer goes off.
 The probe is a one-byte segment, not to be

acknowledged.

 The initial timeout value for the probe is the
then current RTT. It gets doubled for each
timeout until it reaches 60 seconds. It then
stays at 60 seconds until the window is
reopened.

36

Some TCP Timers (3/4)
 Keepalive timer

 Is used by the server to prevent a long idle
connection.

 The server sends a probe segment to a client
after an initial idle period of two hours.

 It then sends the subsequent probes at an
interval of 75 seconds each until a response is
received.

 The server will terminate the connection after
the client has not responded to 10 probes.

37

Some TCP Timers (4/4)
 Time-waited timer

 Is also known as the 2MSL timer
 MSL may be 30 seconds, 1 minute, or 2 minutes.

 Is used for normal connection termination.
 To give TCP enough time to handle the loss of

any of the last four segments during connection
termination.

 To prevent old duplicates being misinterpreted
as belonging to a new incarnation of the same
connection.

38

TCP Connection Reset
 For abnormal termination of

connections.
 By sending a segment with the RST bit

set.

39

TCP Sequence Numbers
 A finite 32-bit number space

 0 – 4,294,967,295 (232-1)

 Sequence numbers wrap around.
 One point to ponder:

 How to tell that a segment with a sequence
number smaller than expected is not a
retransmission?

40

 A 3-way handshaking process

TCP Connection Establishment

Client Network Server

Send SYN seq=x

Receive SYN segment

Send SYN seq=y, ACK x+1

Receive SYN+ACK

Send ACK y+1

Receive ACK segment

41

TCP Connection Options
 Three common TCP options (sent in SYN):

 MSS option: The maximum segment size that can
be received.
 65,535 (16 bits for the widow size field in the TCP header)

is the upper limit.

 Window scale option: To allow the advertised widow
size to be scaled (left-shift) 0-14 bits.
 MSS can thus reach up to 65,355 x 214 bytes.

 Timestamp option: May be used for high-speed
connections to prevent possible data corruption
caused by old, delayed, or duplicated segments.

42

read() returns

(server processing request)

read() returns
write()

write()
read() blocks

write()
read() blocks

read() returns

 Packets exchanged for data transfer

TCP Data Transfer

ACK of request
data (reply)

ACK of reply

data (request)

Client Server

43

Send ACK x+1
(inform application)

Send ACK y+1

Receive FIN+ACK

Receive ACK segment

Receive ACK segment

Send FIN seq=x

(application closes connection)
Send FIN seq=y, ACK x+1

Receive FIN segment

 A 4-way handshake

TCP Connection Termination

Client Server

FIN y, ACK x+1

ACK x+1

ACK y+1

FIN x

44

TCP State Transition Diagram

45

For More Information
 RFC 793 – Transmission Control Protocol, Sep-01-1981
 RFC 2581 – TCP Congestion Control, April 1999
 RFC 3168 – The Addition of Explicit Congestion

Notification (ECN) to IP, September 2001.
 RFC 3390 – Increasing TCP’s Initial Window, October 2002
 RFC 3742 – Limited Slow-Start for TCP with Large

Congestion Windows, March 2004
 RFC 4727 – Experimental Values In IPv4, IPv6, ICMPv4,

ICMPv6, UDP, and TCP Headers, November 2006

 TCP tutorials:
http://www.garykessler.net/library/tcpip.html#TCP
http://cities.lk.net/tcp.html

