
Computer Network Programming

TCP Sockets

Dr. Sam Hsu
Computer Science & Engineering

Florida Atlantic University

2

TCP Sockets
The socket() Function
The connect() Function
The bind() Function
The listen() Function
The accept() Function
The fork() and exec() Function
Concurrent Servers
Server/Client Connection Status & Example
The close() Function
The getsockname() and getpeername() Functions
Wrapper Functions

3

The socket() Function
To open a socket for performing network I/O.

For protocol, one may select the system default (0),
since not all combinations of family and type are valid.

#include <sys/socket.h>

int socket(int family, int type, int protocol);
Returns: non-negative descriptor if OK, -1 on error

family Description
AF_INET IPv4 protocols
AF_INET6 IPv6 protocols
AF_LOCAL UNIX domain protocols
AF_ROUTE Routing protocols
AF_KEY Key socket

type Description
SOCK_STREAM stream socket (TCP/SCTP)
SOCK_DGRAM datagram socket (UDP)
SOCK_SEQPACKET sequenced packet socket (SCTP)
SOCK_RAW raw socket (talk to IP directly)

4

The connect() Function (1/3)
Is used by a client to establish a connection with a
server via a 3-way handshake.

sockfd is a socket descriptor returned by the socket()
function.
servaddr contains the IP address and port number of the
server.
addrlen has the length (in bytes) of the server socket
address structure.

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *servaddr,
socklen_t addrlen);

Returns: 0 if OK, -1 on error

5

The connect() Function (2/3)
This function returns only when the
connection is established or an error occurs.
Some possible errors:

If the client TCP receives no response to its SYN
segment, ETIMEDOUT is returned.

The connection-establishment timer expires after
75 seconds (4.4 BSD).

The client will resend SYN after 6 seconds later,
and again another 24 seconds later. If no response
is received after a total of 75 seconds, the error is
returned.

6

The connect() Function (3/3)
If a reset (RST) is received from server,
ECONNREFUSED is returned. This is a hard error.

This indicates that there is no process running at the
server host at the port specified.

If an ICMP “destination unreachable” is received
from an intermediate router, EHOSTUNREACH or
ENETUNREACH is returned. This is a soft error.

Upon receiving the first ICMP message, the client
kernel will keep sending SYNs at the same time
intervals as mentioned earlier, until after 75 seconds
have elapsed (4.4BSD).

7

The bind() Function (1/2)
Is used primarily by a server to assign a local
protocol address to a socket.

sockfd is a socket descriptor returned by the socket()
function.
myaddr is a pointer to a protocol-specific address. With
TCP, it has the IP address and port number of the server.
addrlen has the length (in bytes) of the server socket
address structure.

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *myaddr,
socklen_t addrlen);

Returns: 0 if OK, -1 on error

8

The bind() Function (2/2)
IP address/Port number assignment:

Wildcard address: INADDR_ANY (IPv4), in6addr_any
(IPv6).
TCP servers typically bind their well-known port, and
clients let the kernel choose an ephemeral port.

Process specifies IP address and portNonzeroLocal IP addr

Process specifies IP address, kernel chooses port0Local IP addr

Kernel chooses IP address, process specifies portNonzeroWildcard

Kernel chooses IP address and port0Wildcard

PortIP address Results
Process specifies

9

The listen() Function (1/2)
Is used by a server to convert an unconnected
socket to a passive socket.

sockfd is a socket descriptor returned by the socket()
function.
backlog specifies the maximum number of connections
the kernel should queue for this socket.

#include <sys/socket.h>

int listen(int sockfd, int backlog);

Returns: 0 if OK, -1 on error

10

The listen() Function (2/2)
For a given listening socket, the kernel
maintains 2 queues.

An incomplete connection queue
It contains an entry for each SYN received from a
client, for which the server is awaiting completion of
the TCP 3-way handshake.

A completed connection queue
It contains an entry for each client with whom the
TCP 3-way handshake process has completed.

backlog is the sum of these two queues.
backlog has not been well-defined so far.
One may select any number other than 0.

11

Two TCP Waiting Queues

12

Connections for Various backlogs

13

SYN Flooding
SYN Flooding: A type of attack aiming at
backlog.

A program sends bogus SYNs at a high rate to a
server, filling the incomplete connection queue for
one or more TCP ports.
The source IP address of each SYN is set to a
random number so that the server’s SYN/ACK goes
nowhere.

This is called IP spoofing.
This leaves no room for legitimate SYNs.

TCP ignores an arriving SYN if the queues are full.

backlog should specify just the max number of
completed connections for a listening socket.

14

The accept() Function (1/2)
Is called by a server to return a new descriptor, created
automatically by the kernel, for the connected socket.

sockfd is a socket descriptor returned by the socket()
function.
cliaddr contains the IP address and port number of the
connected client. (a value-result argument)
addrlen has the length (in bytes) of the returned client
socket address structure. (a value-result argument)

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *cliaddr,
socklen_t *addrlen);
Returns: non-negative descriptor if OK, -1 on error

15

The accept() Function (2/2)
The new socket descriptor returned by accept()
is called a connected socket, whereas the one
returned by socket() is called a listening socket.

A given server usually creates only one listening
socket. It exists for the lifetime of the server.
A connected socket is created for each client
connection that is accepted. It exists only for the
duration of the connection.

Both cliaddr and addrlen may be set to the
NULL pointer, if the server is not interested in
knowing the identity of the client.

16

The UNIX fork() Function (1/2)
Is used in UNIX to create a new process.

fork() is called once, but returns twice.
Once in the calling process, called the parent.
Once in the newly created process, called the child.

A parent may have more than 1 child process.

#include <unistd.h>

pid_t fork(void);

Returns: 0 in child, process ID of child in parent, -1 on error

17

The UNIX fork() Function (2/2)
All descriptors open in the parent before fork() are
shared with the child after fork().

The connected socket is then shared between the
parent and the child.

Two typical uses of fork():
A process makes a copy of itself so that one copy can
handle one operation, and the other copy does
something else.

This is typical for network servers.
A process want to execute a new program by calling
exec() in the child process.

User commands in UNIX are typically handled this way.
fork() can be used to implement concurrent servers.

18

The UNIX exec() Function (1/3)
Is used in UNIX to execute a program.
Is a family name for six like functions virtually
doing the same thing, only slightly different in
syntax.

Descriptors open in the process before calling exec()
normally remain open in the new program.

#include <unistd.h>

int execl(…), execv(…), execle(…), execve(…),
execlp(…), execvp(…);

Returns: -1 on error, no return on success

19

The UNIX exec() Function (2/3)
Meaning of different letters:
l: needs a list of arguments.
v: needs an argv[] vector (l and v are mutually

exclusive).
e: needs an envp[] array.
p: needs the PATH variable to find the executable

file.

20

The UNIX exec() Function (3/3)

envpPATH

argvargvargv

execlp execl execle

execvp execv execve

Relationship of the exec() functions.

21

Concurrent Servers
Outline of a typical concurrent server (Fig 4.13)

pid_t pid;
int listenfd, connfd;

listenfd = Socket (...);
/* fill in socket_in{} with server’s well-known port */

Bind (listenfd, ...);
Listen (listenfd, LISTENQ);

for (; ;) {
connfd = Accept (listenfd, ...); /* probably blocks */
if ((pid = Fork ()) == 0) {

Close (listenfd); /* child closes listening socket */
doit (connfd); /* process the request */
Close (connfd); /* done with this client */
exit (0); /* child terminates */

}
Close (connfd); /* parent closes connected socket */

}

22

Server/Client Connection Status (1/2)

client
connect ()

server
listenfd

connfd

connect request

a) before accept() returns

server
listenfd

connfd

client
connect ()

connected

b) after accept() returns

Ref: UNP, Stevens et al., vol 1, ed 3, 2004, AW, p. 115

23

fork()

Server/Client Connection Status (2/2)

Ref: UNP, Stevens et al., vol 1, ed 3, 2004, AW, p. 116

client
connect () connection

Server (parent)
listenfd

connfd

Server (child)
listenfd

connfd

a) parent/child after fork()

Server (parent)
listenfd

connfd

Server (child)
listenfd

connfd

client
connect ()

b) parent/child after closing appropriate sockets

24

Server/Client Example (1/2)

25

Server/Client Example (2/2)

26

The UNIX close() Function (1/2)
Is used to close a socket and terminate a
TCP connection.

sockfd is a socket descriptor returned by the
socket() function.

#include <unistd.h>

int close(int sockfd);

Returns: 0 if OK, -1 on error

27

The UNIX close() Function (2/2)
close() marks socket as closed and returns
immediately.

sockfd is no longer usable.
TCP continues to try sending unsent data.

Hardly knows whether it was ever successful.

close() simply decrements the reference count.
Socket goes away when the reference count becomes 0.

What if the parent does not close the connected socket
for the client?

May run out of descriptors eventually.
No client connection will be terminated.

Reference count remains at 1.

28

getsockname()/getpeername() (1/2)
Is used to get the local/foreign protocol address
associated with a socket.

sockfd is a socket descriptor returned by the socket() call.
All localaddr/peeraddr/addrlen are value-result arguments.

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *localaddr,
socklen_t *addrlen);

int getpeername(int sockfd, struct sockaddr *peeraddr,
socklen_t *addrlen);

Returns: 0 if OK, -1 on error

29

getsockname()/getpeername() (2/2)
Reasons for using these two functions:

To use getsockname() by a TCP client that does not call
bind() to get the local IP address and port number assigned.
To use getsockname() by a TCP server that called bind()
with a port number 0 to get the local port number assigned.
To use getsockname() by a TCP server that called bind()
with the wildcard IP address to get the local IP address
assigned.
To use getsockname() to obtain the address family of a
socket.
To use getpeername() by an execed TCP server that called
accept() to get the identity of the client (its IP address and
port number).

30

Wrapper Functions
A wrapper function provides additional features to
the function it embraces.

It enhances the functionality of the wrapped function.

Quite a few wrapper functions have been defined
in this textbook.

Primarily for better error handling purposes.
Each wrapper function begins with an uppercase letter.

A wrapper function calls a function whose name is the
same but begins with the lowercase letter.

Each wrapper function performs the actual function call,
tests the return value and terminates on an error.

31

Socket(): A Wrapper Example
The wrapper function for socket()
#include “unp.h”

int Socket(int family, int type, int protocol)
{

int n;

if ((n = socket(family, type, protocol)) < 0)
err_sys("socket error");

return(n);
}
/* end Socket */

32

Pthread_mutex_lock(): Another
The wrapper function for pthread_mutext_lock()

#include “unp.h”

void Pthread_mutex_lock(pthread_mutex_t *mptr)
{

int n;

if ((n = pthread_mutex_lock (mptr)) == 0)
return;

errno = n;
err_sys(" pthread_mutex_lock error");

}
/* end Pthread_mutex_lock */

33

Reading Assignment

Read Chapter 4.

