
1

Computer Network Programming

UNIX Threads
Dr. Sam Hsu

Computer Science & Engineering
Florida Atlantic University

2

UNIX Threads
 Motivation for Threads
 Thread Resources
 Thread Implementations
 Unix Threads
 POSIX Threads
 Thread Operations
 MT Safe Functions
 Forking Process in Threads
 Dealing with Locks in Threads

3

What Is a Thread?
 A thread is an execution stream within a

process with its own stack, local variables,
and program counter.
 There may be more than one execution stream in

a process.

 A thread shares resources with other threads
executing in the same address space.

 A multi-threaded process can perform several
tasks concurrently.

4

Motivation for Threads
 Fork is expensive.
 IPC is required for data exchange

between parent and child.
 A thread is lightweight.

 Thread creation is about 10-100 times
faster than process creation.

5

All Threads Are Siblings
 All threads executing in the same process

address space are called sibling threads.
 A thread can create as many threads as it

pleases. However there is no relationship
among them after creation.
 No parent/child relationship between the creator

thread and the createe thread.
 They are peers in the same process.

6

Threads Resources (1/3)
 All threads within a process share:

 Text segment
 Data segment
 Heap
 Open files
 Signal handlers
 Current working directory
 UID and GID

7

Threads Resources (2/3)
 However, each thread has its own (known as

thread-private):
 TID
 Set of registers, including program counter and

stack pointer
 Stack (for local variables and return addresses)
 errno variable
 Signal mask
 Priority

8

Threads Resources (3/3)
 A thread also has its thread-specific

data (TSD).
 Data structures of TSD depending on

applications.

9

Thread Implementations
 Threads may be implemented as:

 A kernel-level abstraction,
 Also called kernel-supported threads

 A user-level abstraction, or
 A combination of the two.

10

Kernel-level Abstraction
 Kernel-supported threads require kernel data

structures.
 The OS is aware of each thread.
 Kernel threads are required to support user-level

threads.
 The kernel must contain system-level code for

each specified thread function.
 This approach is good for supporting parallelism

with multiple threads running on multiple
processors.

11

User-level Abstraction
 A user-level abstraction is represented by data

structures within a process’s own address space.
 It does not require direct support from the OS.

 It runs on top of the OS and is transparent to it.
 The OS maintains a runtime system to manage thread activities.

 Has the potential to execute only when associated
with a kernel process.
 User-level threads are multiplexed onto a kernel process

for execution.
 In general, user-levels threads are designed to

share resources with other threads within their
own process space running on a single processor.

12

A Combination of Two
 The combined model offers both multiplexed

and bound user-level threads.
 A user-level thread is bound (one-to-one

mapping) to a kernel thread.
 A kernel thread is also known as a lightweight process

(LWP).
 LWPs are also called virtual processors by some

authors.
 Or, multiple user-level threads are multiplexed

onto a kernel LWP(s).
 The number of kernel LWPs available for the multiplexed

user threads may be either implementation-dependent,
or tunable by the application.

13

UNIX Threads
 UNIX threads implementation is system

dependent.
 The UNIX Threads Interface does not define the

implementation.
 However, it does provide for both multiplexed and

bound threads.
 Both implementations can support exactly the same APIs.

 The relations between user-level threads and
kernel LWPs may be:
 1-to-1
 M-to-1 (Many-to-One)
 M-to-N (Many-to-Many)

14

POSIX Threads
 POSIX threads are portable among

UNIX systems that are POSIX-
compliant.
 It is known as IEEE 1003.1c
 AKA Pthreads

15

Other Threads Implementations
 Some other threads implementations:

 Light Weight Kernel Threads (LWKT) in BSDs
 Native POSIX Thread Library (NPTL) for Linux
 Win32 Threads
 GNU Portable Threads
 Mac OS Threads
 Solaris Threads
 Java Threads

16

Thread Operations
 Thread creation.
 Thread execution.
 Thread termination.
 Thread management.
 Thread synchronization.
 Thread scheduling.
 TSD manipulation.
 Thread errono handling.

17

Thread Creation (1/2)
 A thread is created by another thread.
 Once a thread is created, it

 Has its own set of attributes.
 Either given by the initiating thread or system

default.

 Has its own execution stack.

18

Thread Creation (2/2)
 Inherits its signal mask and scheduling

priority from the calling thread.
 Does not inherit any pending signals.
 Does not inherit any TSD data.

 Primitivies:
 int pthread_create()

19

Thread Execution (1/2)
 Threads of a process execute in a single

UNIX process environment.
 All resources available in this environment

are shared by the sibling threads and one
or more thread execution environments.
 A thread execution environment contains the

scheduling policy, priority, and the disposition
of signals for a thread.

20

Thread Execution (2/2)
 In terms of execution, a process has

one or more kernel LWPs that provide
the execution vehicle for the threads.
 The threads of a process are either

multiplexed onto an available kernel LWP,
or are bound (mapped one-to-one) to a
specific LWP for execution.
 In case a kernel call blocks, the corresponding

user level thread(s) also blocks.

21

Thread Termination (1/2)
 A thread terminates when either its execution

reaches the last statement in the thread, is
signaled to quit or it exits voluntarily (a call to
pthread_exit()).
 When a thread exits, normally a sibling can

request the exit status of the terminated thread.
 However, all threads terminate if one thread

calls exit(), or execution falls off the bottom
of main().
 Use pthread_exit() in main() to avoid premature

termination of the program.

22

Thread Termination (2/2)
 A UNIX process will terminate when its

last thread exits.
 Primitivies:

 void pthread_exit()
 int pthread_cancel()

23

Thread Management (1/2)
 A thread can be either detached or

nondetached.
 A detached thread will clean up after itself

upon termination.
 Resources to return for reuse include its thread

structure, TSD array, stack, and heap.

 A nondetached thread will clean up after
itself only after it has been joined.
 Nondetached threads are the default.

24

Thread Management (2/2)
 Primitivies:

 int pthread_join()
 int pthread_detach()

25

Thread Synchronization (1/6)
 Mutual exclusion locks

 A mutual exclusion (mutex) lock indicates
that the use of a shared resource is
mutually exclusive between competing
threads.
 To use a resource, a thread must first lock the

mutex guarding the resource.
 When the use is complete, the thread must

unlock the mutex, thereby permitting other
threads to use the resource.

26

Thread Synchronization (2/6)
 The section of code manipulating the

shared resource is often referred to as a
critical section.
 The integrity of the shared resource is ensured

only if all threads using the resource follow the
lock-unlock convention.

27

Thread Synchronization (3/6)
 Condition variables

 A convenient mechanism to notify
interested threads of an event.

 How it works:
 A thread obtains a mutex (a condition variable

always has an associated mutex) and evaluates
the condition under the mutex's protection.

 If the condition is true, the thread completes its
task, releasing the mutex when appropriate.

28

Thread Synchronization (4/6)
 If the condition is false, the mutex is released

by the system and the thread goes to sleep on
the condition variable.

 When the value of the condition variable is
changed by another thread, it can wake up the
thread(s) sleeping on the variable.
 The awakened thread will reevaluate the

condition variable again.

 A typical example of using a condition
variable would be for a thread to suspend
its execution until a message is received.

29

Thread Synchronization (5/6)
 Barriers

 A mechanism for a set of threads to sync up.
 A barrier is initialized to the number of threads

to be using it. When a thread reaches it, its
execution is suspended until all of the
participating threads arrive at the barrier.

 At this point, all threads are permitted to
resume execution.

 A barrier provides a rendezvous point for
threads cooperating in the barrier.

30

Thread Synchronization (6/6)
 Primitivies:

 int int pthread_mutexattr_init()
 int pthread_mutexattr_setpshared()
 int pthread_mutex_init()
 int pthread_mutex_lock()
 int pthread_mutex_unlock()
 int pthread_mutex_trylock()
 int pthread_mutex_destroy()

31

Thread Scheduling (1/4)
 Common scheduling policies:

 First-come-first-serve
 Shortest-job first
 Priority-based
 Round-robin

32

Thread Scheduling (2/4)
 Global and local scheduling

 If a thread is bound (one-to-one with a LWP), its
scheduling is determined by the kernel scheduling
algorithms.
 It is known as global scheduling.
 Its scheduling class is said to have a System

Contention Scope.
 If a thread is unbound, the thread library has full

control which thread will be scheduled on an LWP.
 It is known as local scheduling.
 It is said to have a Process Contention Scope.

33

Thread Scheduling (3/4)
 Scheduling of threads involves three factors:

 Contention scope
 Scheduling policy
 Thread priority

 Note: Most thread implementations today use
a priority-based, preemptive (a thread can be
removed by a thread of higher priority), non-
time slicing algorithm to schedule thread
activities. It is also recommended that you, as
a programmer, to spend little time thinking
about issues of thread scheduling.

34

Thread Scheduling (4/4)
 Primitives:

 void pthread_setschedparam()
 void pthread_getschedparam()

35

TSD Manipulation (1/3)
 TSD (Thread Specific Data) provides a

mechanism of handling global data in a
thread.
 TSD is globally accessible to all functions in a

thread but still unique to the thread.
 A TSD value is referenced using a thread specific

pointer and an associated key.
 To make use of TSD, a thread must create

and bind (associate) the key with the TSD
data.
 The TSD keys in a thread are global to all functions

in the thread.

36

TSD Manipulation (2/3)
 A destructor function for cleanup can be

specified at the time of creating a TSD key.
 Dynamically allocated memory in TSD needs to

be explicitly freed in the destructor.

 To ensure data integrity, mutual exclusion
is desired for accessing TSD.

37

TSD Manipulation (3/3)
 Primitives:

 pthread_key_create()
 pthread_key_delete()
 pthread_getspecific()
 pthread_setspecific()

38

Thread errno Handling
 In general, pthread functions do not set

the standard UNIX errno variable. When
an error occurs, the errno value is the
return value of the function.
 On may need to use a variable to save the

return value. Therefore, each thread has,
in effect, its own errno variable.

39

Thread Attributes (1/3)
 Attributes defined and their values:

 contentionscope
 PTHREAD_SCOPE_PROCESS
 PTHREAD_SCOPE_SYSTEM

 detachstate
 PTHREAD_CREATE_JOINABLE
 PTHREAD_CREATE_DETACHED

 stackaddr
 NULL
 nnn (valid address)

40

Thread Attributes (2/3)
 stacksize

 NULL
 nnn (valid address)

 policy
 SCHED_OTHER
 SCHED_FIFO
 SCHED_RR

 inheritsched
 PTHREAD_EXPLICIT_SCHED

41

Thread Attributes (3/3)
 Policy

 The data type for thread priorities is int
sched_priority. It is defined in the
sched_param structure found in the header
file <sched.h>. However, POSIX gives no
advice on how to use the priority levels
provided.

42

Getting/Setting Attributes (1/2)
 Primitives:

 int pthread_attr_init()
 int pthread_attr_getscope()
 int pthread_attr_setscope()
 int pthread_attr_getdetachstate()
 int pthread_attr_setdetachstate()
 int pthread_attr_getstackaddr()
 int pthread_attr_getstackaddr()
 int pthread_attr_setstackaddr()

43

Getting/Setting Attributes (2/2)
 int pthread_attr_getstacksize()
 int pthread_attr_setstacksize()
 int pthread_attr_getschedparam()
 int pthread_attr_setschedparam()
 int pthread_attr_getschedpolicy()
 int pthread_attr_setschedpolicy()
 int pthread_attr_getinheritsched()
 int pthread_attr_setinheritsched()

44

Signals in Threads
 Two types of signals in threads

 Synchronous: Signals delivered to the
thread that generated the exception.
 Ex: SIGFPE (divide by zero)

 Asynchronous: Signals delivered to a non-
specific or non-offending thread.
 Ex: SIGHUP (hang up)

45

Different Uses of Signals
 Three applications

 Error reporting
 Situation reporting
 Interruption

 Methods of handling signals
 These 3 different situations are mixed together in

single threaded processes, and handled
indifferently.

 In multithreaded programming, the distinctions
become important. They are handled differently.

46

Signal Delivery
 For error reporting, the thread library guarantees

that a signal will be delivered to the offending
thread.

 For situation reporting, the thread library decides
which thread should receive a specific signal and
arranges for the execution of the associated
signal handler.

 For interruption, there is no general method of
ensuring that a signal gets delivered to the
intended thread.
 A dirty fix, mask out the signal on all but one thread.

47

Process-wide Signal Handlers
 Be aware that signal handlers are

process-wide.
 Only one set of signal handlers per

process.
 No thread-specific signal handlers.

 However, each thread can have its own
signal mask.

48

Rationale for One Set
 Rationale of having one set of signal

handlers for all threads in a process:
 Signals are used for asynchronous events.

However, multithreading is itself
asynchronous enough.
 A multithreaded program can simply spawn a

new thread to wait for an event of interest.

49

Handling Signals in Threads
 To handle signals effectively in threads, a

programmer,
 Needs to be concerned of the most is probably the

thread signal mask.
 Employs a simple solution by designating one

thread to take care of signals in a process.
 Masking out all asynchronous signals on all threads but

one, and let this one handles the asynchronous signals of
the process.

50

Singal Primitives
 Primitives:

 int pthread_kill()
 int pthread_sigmask()
 int sigwait()
 int sigtimedwait()
 int sigwaitinfo()

51

MT Safe Functions
 MT safe means that a function can be called

from multiple threads concurrently.
 The function can be a C library function, a system call,

etc.
 To be MT safe, a function must:

 Lock any shared data it uses.
 Call only other MT safe functions.
 Use the correct error number (errno).

 Be aware that errno is process-wide.

 Note: It is OK to use an MT unsafe function in an
MT program, but just don't call it concurrently.

52

Forking Processes in Threads
 There are two semantics in defining

fork():
 Only the calling thread is replicated

(fork1()).
 POSIX uses this one.

 All threads and LWPs are replicated
(forkall()).

53

Dealing with Locks in Threads
 Be cautious about touching any locks that

might be held by threads that do not exist in
the child process.
 One may arrive at a deadlock.

 Suggestion: Have the child process call exec()
immediately after the fork1() call to avoid a
potential deadlock.

 Also, POSIX defines pthread_atfork() to help
solve the deadlock-in-the-child problem.

54

Some References
 http://www.llnl.gov/computing/tutorials/pthre

ads/
 http://math.arizona.edu/~swig/documentation

/pthreads
 http://www.yolinux.com/TUTORIALS/LinuxTut

orialPosixThreads.html#SYNCHRONIZATION /
 http://liinwww.ira.uka.de/bibliography/Os/thr

eads.html
 Chapter 26, UNIX Network Programming,

Volume 1, 3rd ed., W. Richard Stevens.

