Computer Network Programming

The Transport Layer

Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University

The Transport Layer

- The Big Picture
- Overview of TCP/IP protocols
- TCP Packet Exchanges
- TCP State Transition Diagram
- SCTP Packet Exchanges
- SCTP State Transition Diagram
- TCP and UDP Output
- Buffer Sizes and Limitations
- Port Numbers
- Internet Services

The Big Picture

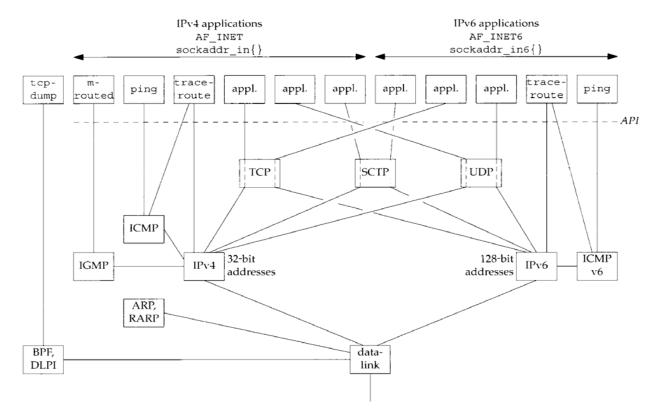


Figure 2.1 Overview of TCP/IP protocols.

IPv4

IPv4: Internet Protocol version 4

- IPv4, often denoted as IP, has been the workhorse protocol of the TCP/IP protocol suite since the early 1980s.
- IPv4 is a connectionless protocol.
- IPv4 uses 32-bit addresses.
- IPv4 packets are called *datagrams*.
- IPv4 provides packet delivery service for TCP, UDP, SCTP, ICMP, and IGMP.

IPv6

IPv6: Internet Protocol version 6

- IPv6 was designed in the mid-1990s as a replacement for IPv4.
- IPv6 is a connectionless protocol.
- IPv6 uses 128-bit addresses.
- IPv6 has built-in security features.
- IPv6 provides QoS support.
- IPv6 packets are called *datagrams*.
- IPv6 provides packet delivery service for TCP, UDP, SCTP, ICMPv6.

TCP

TCP: Transmission Control Protocol

- TCP is a connection-oriented protocol.
- TCP provides a reliable, full-duplex byte stream service.
- TCP features include acknowledgments, timeouts, retransmissions, end-to-end flow control, etc.
- TCP packets are called segments.
- TCP can use either IPv4 or IPv6.

UDP

- UDP: User Datagram Protocol
 - UDP is a connectionless protocol.
 - UDP does not guarantee packet delivery.
 - UDP does not provide acknowledgments, timeouts, retransmissions, end-to-end flow control, etc.
 - UDP packets are called *datagrams*.
 - UDP can use either IPv4 or IPv6.

SCTP

SCTP: Stream Control Transmission Protocol

- SCTP is a connection-oriented protocol.
- SCTP provides a reliable, full-duplex, messageoriented service.
- SCTP provides *associations* between clients and servers.
- SCTP is *multihomed*.
- An SCTP packet is composed of a common header and *chunks*.
- SCTP can use either IPv4 or IPv6, or both simultaneously on the same association.

ICMP

ICMP: Internet Control Message Protocol

- ICMP provides error reports and control information between routers and hosts.
- ICMP is message-oriented.
- ICMP messages are transmitted via IP datagrams.
- ICMP can be either ICMPv4 or ICMPv6.

IGMP

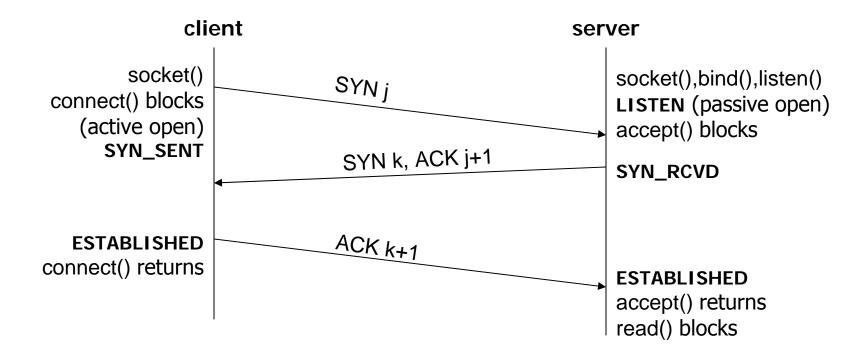
IGMP: Internet Group Management Protocol

- IGMP is used by routers and hosts that support multicasting to exchange group membership information.
- IGMP is message-oriented.
- IGMP messages are transmitted via IP datagrams.

ARP/RARP

- ARP: Address Resolution Protocol
 - ARP maps an IPv4 address to an underlying hardware address.
 - ARP is normally used on broadcast networks such as Ethernet, token ring, and FDDI
- RARP: Reverse Address Resolution Protocol
 - RARP maps an underlying hardware address to an IPv4 address.
 - RARP is usually used by a diskless host to obtain its IP address from its server during booting.

BPF/DLPI

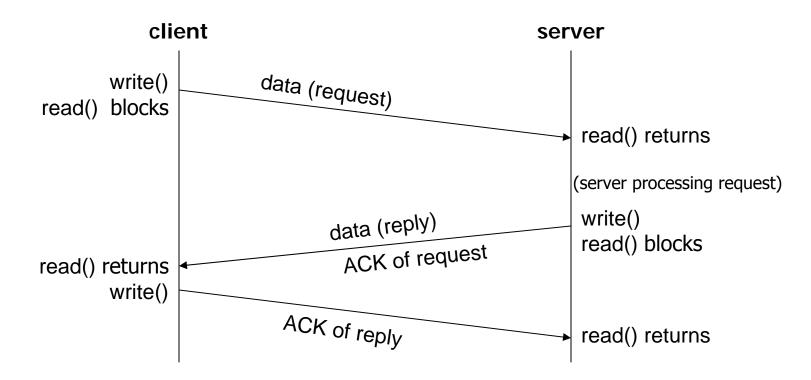

- BPF: BSD Packet Filter
 - BPF is an interface that provides access to the datalink layer.
 - BPF is normally found on Berkeley-derived UNIX.
- DLPI: Datalink Provider Interface
 - DLPI is an interface that provides access to the datalink layer.
 - DLPI is normally provided on SVR4 UNIX.

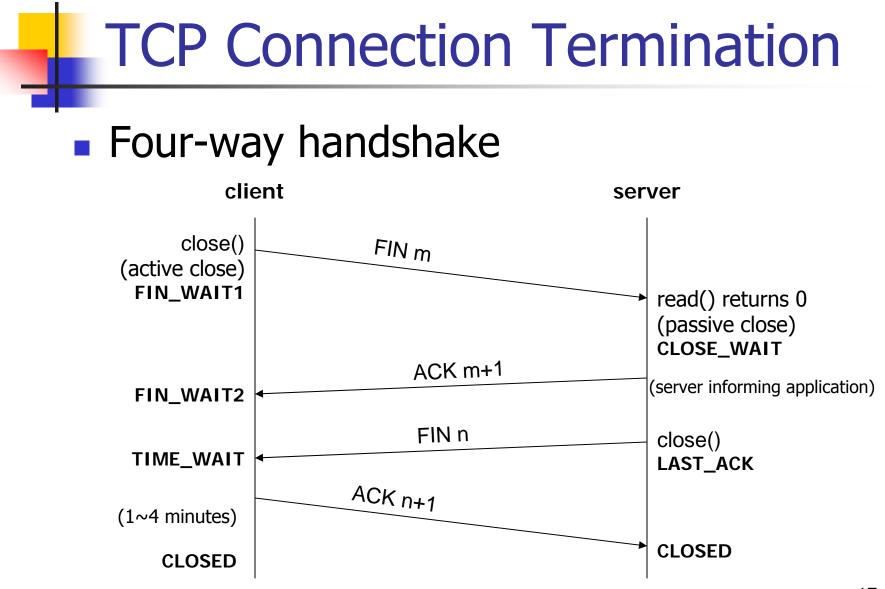
Comparing TCP/UDP/SCTP

Features	ТСР	UDP	SCTP		
Connection between client and server	Yes, one-to-one	No	Yes, one-to-one, one-to- many (multi-homed)		
Data	Byte-stream, grouped into segments	Datagram	Byte-stream, grouped into chunks		
Reliability	Yes, cumulative ack, time-out, retransmission	No	Yes, cumulative ack, time-out, retransmission		
Sequencing	Yes	No	Yes		
Flow/Congestion control	Yes, window-based	No	Yes, window-based		
Full-duplex	Yes	Yes	Yes		

TCP Connection Establishment

Three-way Handshake

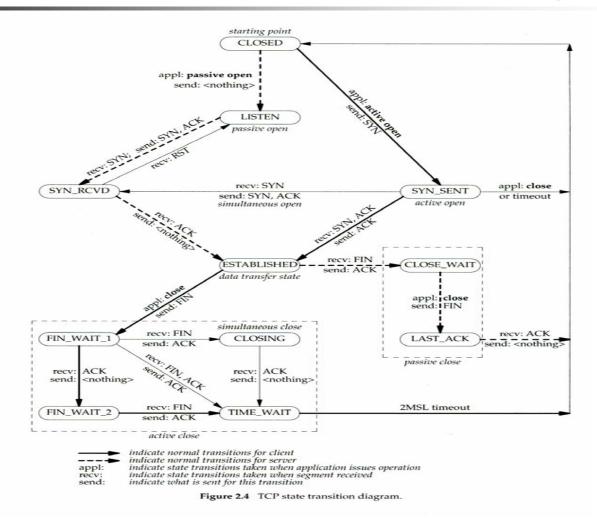



TCP Connection Options

- Three common TCP options (sent in SYN):
 - MSS option: The *maximum segment size* that can be received.
 - 65,535 (16 bits for the widow size field in the TCP header) is the upper limit.
 - Window scale option: To allow the advertised widow size to be scaled (left-shift) 0-14 bits.
 - MSS can thus reach up to 65,355 x 2¹⁴ bytes.
 - Timestamp option: May be used for high-speed connections to prevent possible data corruption caused by old, delayed, or duplicated segments.

TCP Data Transfer

Packets exchanged for data transfer



TIME_WAIT State

- Its duration is twice the MSL (*maximum* segment lifetime), sometimes called 2MSL.
 - MSL may be 30 seconds, 1 minute, or 2 minutes.
- Two reasons for the TIME_WAIT state:
 - To implement TCP's FDX connection termination reliably.
 - To give TCP enough time to handle the loss of any of the last four segments.
 - To allow old duplicate segments to expire in the network.
 - To prevent old duplicates being misinterpreted as belonging to a new incarnation of the same connection.

TCP State Transition Diagram

TCP Packet Exchanges

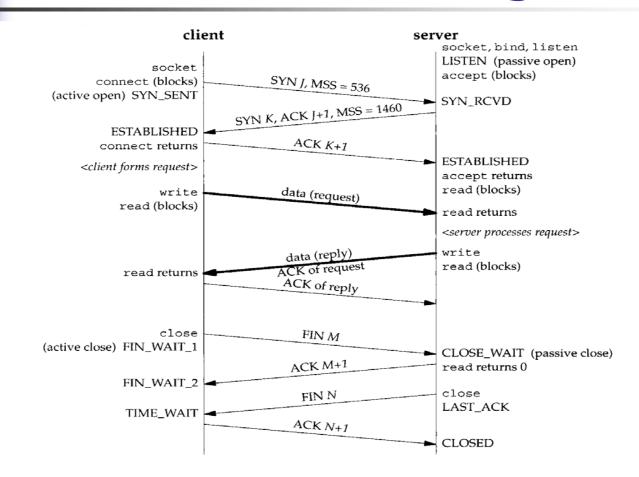
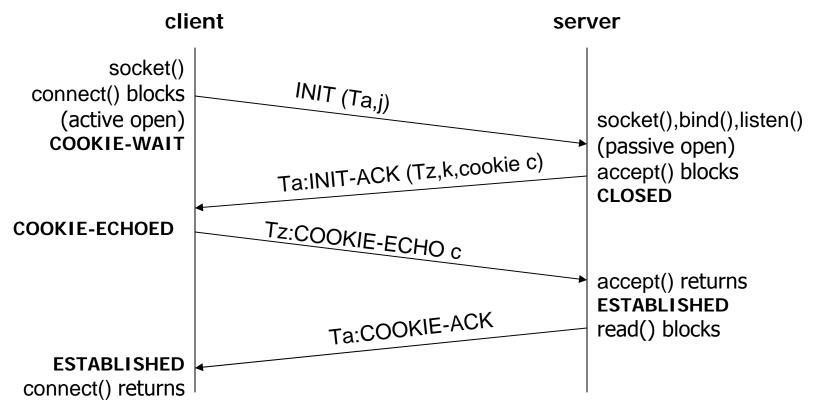
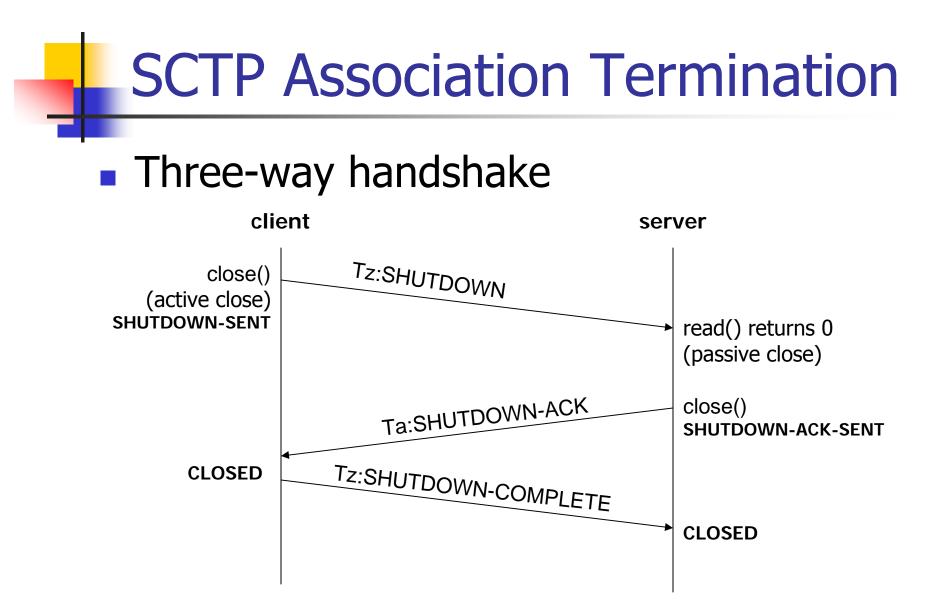
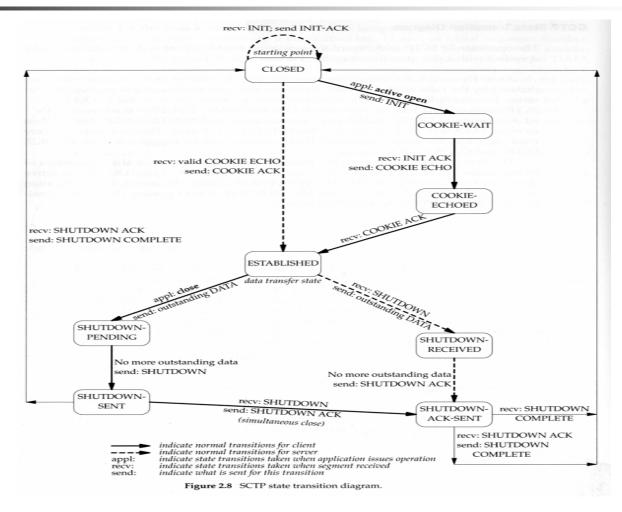



Figure 2.5 Packet exchange for TCP connection.

SCTP Association Establishment


Four-way Handshake

SCTP Options


Two extensions are under development.

- The dynamic address extension
 - It allows cooperating SCTP endpoints to dynamically add and remove IP addresses from an existing association.
- The partial reliability extension
 - It allows cooperating SCTP endpoints, under application direction, to limit the retransmission of data.
 - When a message becomes too old to send, the message may be skipped and thus no longer sent to the peer.

SCTP State Transition Diagram

SCTP Packet Exchanges

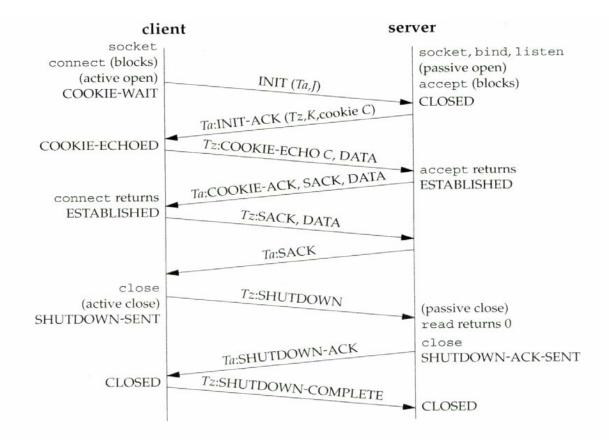
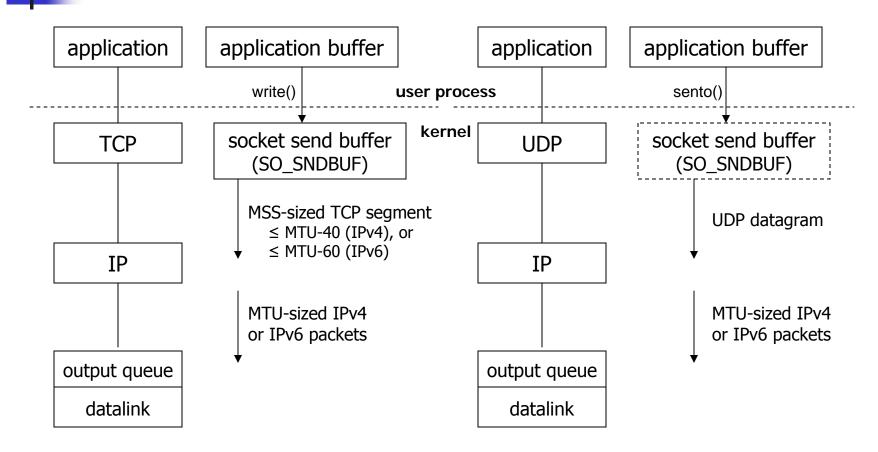
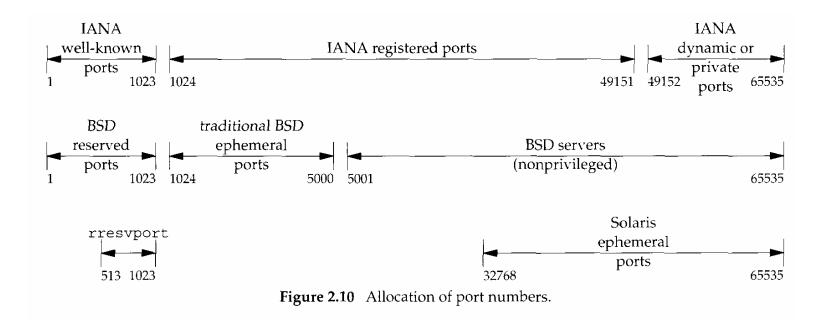



Figure 2.9 Packet exchange for SCTP association.

TCP Output and UDP Output



Ref: UNP, Stevens et al., vol 1, ed 3, 2004, AW, pp. 58-59.

Size Matters

- Maximum IP datagrams:
 - IPv4: 65,535; IPv6: 65,575 (without jumbo payload option)
- Link MTU (*maximum transmission unit*):
 - Ethernet: 1,500; FDDI: 4,325; PPP: configurable
- Path MTU: The smallest MTU in the path between two hosts.
 - 1,500 is the popular one today.
 - Path MTU may be asymmetric between two hosts, due to possibly different route in each direction.
- TCP MSS (*maximum segment size*)
 - It is subject to the reassembly buffer size at two hosts.
 - However, it is often the link MTU minus IP & TCP headers.

Allocation of Port Numbers

Standard Internet Services

Name	TCP Port	UDP Port	RFC	Description
echo	7	7	862	Sever returns whatever the client sends.
discard	9	9	863	Sever discards whatever the client sends.
daytime	13	13	867	Server returns the time and date in a human-readable format.
chargen	19	19	864	TCP server sends a continual stream of characters, until the connection is terminated by the client. UDP server sends a datagram containing a random number of characters (0-512) each time the client sends a datagram.
time	37	37	868	Server returns the time as a 32-bit binary number. This number represents the number of seconds since midnight January 1, 1900, UTC.

Protocol Usage by Common Internet Applications

Application	IP	ICMP	UDP	ТСР	SCTP
ping traceroute		•	•		
OSPF (routing protocol) RIP (routing protocol) BGP (routing protocol)	•		٠	•	
BOOTP (bootstrap protocol) DHCP (bootstrap protocol) NTP (time protocol) TFTP SNMP (network management protocol)			• • • •		
SMTP (electronic mail) Telnet (remote login) SSH (secure remote login) FTP HTTP (HyperText Transfer Protocol) NNTP (network news) LPR (remote printing)					
DNS NFS (network filesystem) Sun RPC DEC RPC			•	• • •	
IUA (ISDN over IP) M2UA, M3UA (SS& telephony signaling) H.248 (media gateway control) H.323 (IP telephony) SIP (IP telephony)			•	• •	•

Reading Assignment

Read Chapter 2.