Machine Learning Techniques for Data Mining

Eibe Frank
University of Waikato
New Zealand
PART V

Credibility:
Evaluating what’s been learned
Evaluation: the key to success

- How predictive is the model we learned?
- Error on the training data is *not* a good indicator of performance on future data
 - Otherwise 1-NN would be the optimum classifier!
- Simple solution that can be used if lots of (labeled) data is available:
 - Split data into training and test set
- However: (labeled) data is usually limited
 - More sophisticated techniques need to be used
Issues in evaluation

- Statistical reliability of estimated differences in performance (→ significance tests)
- Choice of performance measure:
 - Number of correct classifications
 - Accuracy of probability estimates
 - Error in numeric predictions
- Costs assigned to different types of errors
 - Many practical applications involve costs
Training and testing I

- Natural performance measure for classification problems: **error rate**
 - *Success*: instance’s class is predicted correctly
 - *Error*: instance’s class is predicted incorrectly
 - Error rate: proportion of errors made over the whole set of instances

- **Resubstitution error**: error rate obtained from the training data
- Resubstitution error is (hopelessly) optimistic!
Training and testing II

- Test set: set of independent instances that have played no part in formation of classifier
 - Assumption: both training data and test data are representative samples of the underlying problem

- Test and training data may differ in nature
 - Example: classifiers built using customer data from two different towns A and B
 - To estimate performance of classifier from town A in completely new town, test it on data from B
A note on parameter tuning

- It is important that the test data is not used *in any way* to create the classifier.
- Some learning schemes operate in two stages:
 - Stage 1: builds the basic structure
 - Stage 2: optimizes parameter settings
- The test data can’t be used for parameter tuning!
- Proper procedure uses *three* sets: training data, validation data, and test data
 - Validation data is used to optimize parameters.
Making the most of the data

- Once evaluation is complete, *all the data* can be used to build the final classifier.
- Generally, the larger the training data the better the classifier (but returns diminish).
- The larger the test data the more accurate the error estimate.
- *Holdout* procedure: method of splitting original data into training and test set.
 - Dilemma: ideally we want both, a large training and a large test set.
Predicting performance

- Assume the estimated error rate is 25%. How close is this to the true error rate?
 - Depends on the amount of test data
- Prediction is just like tossing a biased (!) coin
 - “Head” is a “success”, “tail” is an “error”
- In statistics, a succession of independent events like this is called a Bernoulli process
 - Statistical theory provides us with confidence intervals for the true underlying proportion!
Confidence intervals

- We can say: p lies within a certain specified interval with a certain specified confidence.

- Example: $S=750$ successes in $N=1000$ trials
 - Estimated success rate: 75%
 - How close is this to true success rate p?
 - Answer: with 80% confidence $p \in [73.2, 76.7]$.

- Another example: $S=75$ and $N=100$
 - Estimated success rate: 75%
 - With 80% confidence $p \in [69.1, 80.1]$.
Mean and variance

- Mean and variance for a Bernoulli trial: $p, p(1-p)$
- Expected success rate $f = S/N$
- Mean and variance for f: $p, p(1-p)/N$
- For large enough N, f follows a normal distribution
- c% confidence interval $[-z \leq X \leq z]$ for random variable with 0 mean is given by: $\Pr[-z \leq X \leq z] = c$
- Given a symmetric distribution:

$$\Pr[-z \leq X \leq z] = 1 - (2 \times \Pr[X \geq z])$$
Confidence limits

- Confidence limits for the normal distribution with 0 mean and a variance of 1:

<table>
<thead>
<tr>
<th>Pr[X ≥ z]</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td>3.09</td>
</tr>
<tr>
<td>0.5%</td>
<td>2.58</td>
</tr>
<tr>
<td>1%</td>
<td>2.33</td>
</tr>
<tr>
<td>5%</td>
<td>1.65</td>
</tr>
<tr>
<td>10%</td>
<td>1.28</td>
</tr>
<tr>
<td>20%</td>
<td>0.84</td>
</tr>
<tr>
<td>40%</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- Thus: \(\Pr[-1.65 \leq X \leq 1.65] = 90\% \)

- To use this we have to reduce our random variable \(f \) to have 0 mean and unit variance
Transforming f

- Transformed value for f:
 \[
 \frac{f - p}{\sqrt{p(1 - p)/N}}
 \]
 (i.e. subtract the mean and divide by the standard deviation)

- Resulting equation:
 \[
 \Pr \left[-z \leq \frac{f - p}{\sqrt{p(1 - p)/N}} \leq z \right] = c
 \]

- Solving for p:
 \[
 p = \left(f + \frac{z^2}{2N} \pm z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) \sqrt{1 + \frac{z^2}{N}}
 \]
Examples

- $f=75\%, N=1000, c=80\%$ (so that $z=1.28$):
 \[p \in [0.732, 0.767] \]

- $f=75\%, N=100, c=80\%$ (so that $z=1.28$):
 \[p \in [0.691, 0.801] \]

- Note that normal distribution assumption is only valid for large N (i.e. $N > 100$)

- $f=75\%, N=10, c=80\%$ (so that $z=1.28$):
 \[p \in [0.549, 0.881] \]

should be taken with a grain of salt
Holdout estimation

- What shall we do if the amount of data is limited?
- The *holdout* method reserves a certain amount for testing and uses the remainder for training
 - Usually: one third for testing, the rest for training
- Problem: the samples might not be representative
 - Example: class might be missing in the test data
- Advanced version uses *stratification*
 - Ensures that each class is represented with approximately equal proportions in both subsets
Repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratification)
 - The error rates on the different iterations are averaged to yield an overall error rate
- This is called the repeated holdout method
- Still not optimum: the different test set overlap
 - Can we prevent overlapping?
Cross-validation

- Cross-validation avoids overlapping test sets
 - First step: data is split into k subsets of equal size
 - Second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- Often the subsets are stratified before the cross-validation is performed
- The error estimates are averaged to yield an overall error estimate
More on cross-validation

- Standard method for evaluation: stratified ten-fold cross-validation
- Why ten? Extensive experiments have shown that this is the best choice to get an accurate estimate
 - There is also some theoretical evidence for this
- Stratification reduces the estimate’s variance
- Even better: repeated stratified cross-validation
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)
Leave-one-out cross-validation

- Leave-one-out cross-validation is a particular form of cross-validation:
 - The number of folds is set to the number of training instances
 - I.e., a classifier has to be built n times, where n is the number of training instances
- Makes maximum use of the data
- No random subsampling involved
- Very computationally expensive (exception: NN)
Another disadvantage of LOO-CV: stratification is not possible

- It guarantees a non-stratified sample because there is only one instance in the test set!

Extreme example: completely random dataset with two classes and equal proportions for both of them

- Best inducer predicts majority class (results in 50% on fresh data from this domain)
- LOO-CV estimate for this inducer will be 100%!
The bootstrap

- CV uses sampling *without replacement*
 - The same instance, once selected, can not be selected again for a particular training/test set
- The *bootstrap* is an estimation method that uses sampling with replacement to form the training set
 - A dataset of n instances is sampled n times with replacement to form a new dataset of n instances
 - This data is used as the training set
 - The instances from the original dataset that don’t occur in the new training set are used for testing
The 0.632 bootstrap

- This method is also called the 0.632 bootstrap
- A particular instance has a probability of $1 - 1/n$ of not being picked
- Thus its probability of ending up in the test data is:

\[
\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368
\]

- This means the training data will contain approximately 63.2% of the instances
Estimating error with the bootstrap

- The error estimate on the test data will be very pessimistic
 - It contains only ~63% of the instances
- Thus it is combined with the resubstitution error:
 \[err = 0.632 \cdot e_{\text{test instances}} + 0.368 \cdot e_{\text{training instances}} \]
- The resubstitution error gets less weight than the error on the test data
- Process is repeated several time, with different replacement samples, and the results averaged
More on the bootstrap

- It is probably the best way of estimating performance for very small datasets
- However, it has some problems
 - Consider the random dataset from above
 - A perfect memorizes will achieve 0% resubstitution error and ~50% error on test data
 - Bootstrap estimate for this classifier:

\[
err = 0.632 \cdot 50\% + 0.368 \cdot 0\% = 31.6\%
\]

- True expected error: 50%
Comparing data mining schemes

- Frequent situation: we want to know which one of two learning schemes performs better
- Note: this is domain dependent!
- Obvious way: compare 10-fold CV estimates
- Problem: variance in estimate
- Variance can be reduced using repeated CV
- However, we still don’t know whether the results are reliable
Significance tests

- Significance tests tell us how confident we can be that there really is a difference.
- **Null hypothesis**: there is no “real” difference.
- **Alternative hypothesis**: there is a difference.
- A significance test measures how much evidence there is in favor of rejecting the null hypothesis.
- Let’s say we are using 10 times 10-fold CV.
- Then we want to know whether the two means of the 10 CV estimates are significantly different.
The paired t-test

- *Student’s t-test* tells us whether the means of two samples are significantly different
- The individual samples are taken from the set of all possible cross-validation estimates
- We can use a *paired* t-test because the individual samples are paired
 - The same CV is applied twice
- Let x_1, x_2, \ldots, x_k and y_1, y_2, \ldots, y_k be the $2k$ samples for a k-fold CV
The distribution of the means

- Let m_x and m_y be the means of the respective samples.
- If there are enough samples, the mean of a set of independent samples is normally distributed:
 \[\frac{m_x - \mu_x}{\sqrt{\sigma_x^2 / k}} \]
 \[\frac{m_y - \mu_y}{\sqrt{\sigma_y^2 / k}} \]
- The estimated variances of the means are σ_x^2/k and σ_y^2/k.
- If μ_x and μ_y are the true means then $\frac{m_x - \mu_x}{\sqrt{\sigma_x^2 / k}}$ and $\frac{m_y - \mu_y}{\sqrt{\sigma_y^2 / k}}$ are approximately normally distributed with 0 mean and unit variance.
Student’s distribution

- With small samples ($k<100$) the mean follows *Student’s distribution with $k-1$ degrees of freedom*
- Confidence limits for 9 degrees of freedom (left), compared to limits for normal distribution (right):

<table>
<thead>
<tr>
<th>Pr[$X\geq z$]</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td>4.30</td>
</tr>
<tr>
<td>0.5%</td>
<td>3.25</td>
</tr>
<tr>
<td>1%</td>
<td>2.82</td>
</tr>
<tr>
<td>5%</td>
<td>1.83</td>
</tr>
<tr>
<td>10%</td>
<td>1.38</td>
</tr>
<tr>
<td>20%</td>
<td>0.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pr[$X\geq z$]</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td>3.09</td>
</tr>
<tr>
<td>0.5%</td>
<td>2.58</td>
</tr>
<tr>
<td>1%</td>
<td>2.33</td>
</tr>
<tr>
<td>5%</td>
<td>1.65</td>
</tr>
<tr>
<td>10%</td>
<td>1.28</td>
</tr>
<tr>
<td>20%</td>
<td>0.84</td>
</tr>
</tbody>
</table>
The distribution of the differences

- Let $m_d = m_x - m_y$
- The difference of the means (m_d) also has a Student’s distribution with $k-1$ degrees of freedom
- Let σ_d^2 be the variance of the difference
- The standardized version of m_d is called t-statistic:
\[
t = \frac{m_d}{\sqrt{\sigma_d^2 / k}}
\]
- We use t to perform the t-test
Performing the test

1. Fix a significance level α
 - If a difference is significant at the $\alpha\%$ level there is a $(100-\alpha)\%$ chance that there really is a difference
2. Divide the significance level by two because the test is two-tailed
 - I.e. the true difference can be positive or negative
3. Look up the value for z that corresponds to $\alpha/2$
4. If $t \leq -z$ or $t \geq z$ then the difference is significant
 - I.e. the null hypothesis can be rejected
Unpaired observations

- If the CV estimates are from different randomizations, they are no longer paired.
- Maybe we even used \(k \)-fold CV for one scheme, and \(j \)-fold CV for the other one.
- Then we have to use an unpaired t-test with \(\min(k,j)-1 \) degrees of freedom.
- The \(t \)-statistic becomes:

\[
t = \frac{m_x - m_y}{\sqrt{\frac{\sigma_x^2}{k} + \frac{\sigma_y^2}{l}}}\]
A note on interpreting the result

- All our cross-validation estimates are based on the same dataset.
- Hence the test only tells us whether a *complete* k-fold CV for this dataset would show a difference.
 - Complete k-fold CV generates all possible partitions of the data into k folds and averages the results.
- Ideally, we want a different dataset sample for each of the k-fold CV estimates used in the test to judge performance across different training sets.
Predicting probabilities

- Performance measure so far: success rate
- Also called *0-1 loss function*:

\[
\sum_i \begin{cases}
0 & \text{if prediction is correct} \\
1 & \text{if prediction is incorrect}
\end{cases}
\]

- Most classifiers produces class probabilities
- Depending on the application, we might want to check the accuracy of the probability estimates
- 0-1 loss is not the right thing to use in those cases
The quadratic loss function

- p_1,\ldots, p_k are probability estimates for an instance
- Let c be the index of the instance’s actual class
- $a_1,\ldots, a_k=0$, except for a_c, which is 1
- The quadratic loss is:

\[
\mathbb{E} \left[\sum_j (p_j - a_j)^2 \right] = \left(\sum_{j \neq c} p_j^2 \right) + (1 - p_c)^2
\]

- Justification:

\[
\mathbb{E} \left[\sum_j (p_j - a_j)^2 \right] = \sum_j \left(\mathbb{E}[p_j^2] - 2\mathbb{E}[p_ja_j] + \mathbb{E}[a_j^2] \right)
\]
\[
= \sum_j \left(p_j^2 - 2p_j p^*_j + p^*_j \right) = \sum_j \left((p_j - p^*_j)^2 + p^*_j(1 - p^*_j) \right)
\]
Informational loss function

- The informational loss function is \(-\log(p_c)\), where \(c\) is the index of the instance’s actual class.
- Number of bits required to communicate the actual class.
- Let \(p_1^*, \ldots, p_k^*\) be the true class probabilities.
- Then the expected value for the loss function is:
 \[
 - p_1^* \log_2 p_1 - \cdots - p_k^* \log_2 p_k
 \]
- Justification: minimized for \(p_j = p_j^*\).
- Difficulty: zero-frequency problem.
Discussion

- Which loss function should we choose?
 - The quadratic loss functions takes into account all the class probability estimates for an instance
 - The informational loss focuses only on the probability estimate for the actual class
 - The quadratic loss is bounded by \(1 + \sum_j p_j^2 \)
 - It can never exceed 2
 - The informational loss can be infinite

- Informational loss is related to MDL principle
Counting the costs

- In practice, different types of classification errors often incur different costs

- Examples:
 - Predicting when cows are in heat (“in estrus”)
 * “Not in estrus” correct 97% of the time
 - Loan decisions
 - Oil-slick detection
 - Fault diagnosis
 - Promotional mailing
Taking costs into account

The confusion matrix:

<table>
<thead>
<tr>
<th>Actual class</th>
<th>Predicted class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>True positive</td>
</tr>
<tr>
<td>No</td>
<td>False positive</td>
</tr>
</tbody>
</table>

There are many other types of costs!
- E.g.: cost of collecting training data
Lift charts

- In practice, costs are rarely known
- Decisions are usually made by comparing possible scenarios
- Example: promotional mailout
 - Situation 1: classifier predicts that 0.1% of all households will respond
 - Situation 2: classifier predicts that 0.4% of the 10000 most promising households will respond
- A lift chart allows for a visual comparison
Generating a lift chart

- Instances are sorted according to their predicted probability of being a true positive:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Predicted probability</th>
<th>Actual class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.95</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>0.93</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>0.88</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- In lift chart, x axis is sample size and y axis is number of true positives
A hypothetical lift chart
ROC curves

- *ROC curves* are similar to lift charts
 - "ROC" stands for “receiver operating characteristic”
 - Used in signal detection to show tradeoff between hit rate and false alarm rate over noisy channel

- Differences to lift chart:
 - *y* axis shows percentage of true positives in sample (rather than absolute number)
 - *x* axis shows percentage of false positives in sample (rather than sample size)
A sample ROC curve
Cross-validation and ROC curves

- Simple method of getting a ROC curve using cross-validation:
 - Collect probabilities for instances in test folds
 - Sort instances according to probabilities
- This method is implemented in WEKA
- However, this is just one possibility
 - The method described in the book generates an ROC curve for each fold and averages them
ROC curves for two schemes

![Graph showing ROC curves for two schemes A and B. The x-axis represents False positives ranging from 0 to 100%, and the y-axis represents True positives ranging from 0 to 100%. The graph compares the performance of two different schemes, illustrating their respective true positive and false positive rates.]
The convex hull

- Given two learning schemes we can achieve any point on the convex hull!
- TP and FP rates for scheme 1: t_1 and f_1
- TP and FP rates for scheme 2: t_2 and f_2
- If scheme 1 is used to predict $100 \times q\%$ of the cases and scheme 2 for the rest, then we get:
 - TP rate for combined scheme: $q \times t_1 + (1-q) \times t_2$
 - FP rate for combined scheme: $q \times f_2 + (1-q) \times f_2$
Cost-sensitive learning

- Most learning schemes do not perform cost-sensitive learning
 - They generate the same classifier no matter what costs are assigned to the different classes
 - Example: standard decision tree learner
- Simple methods for cost-sensitive learning:
 - Resampling of instances according to costs
 - Weighting of instances according to costs
- Some schemes are inherently cost-sensitive, e.g. naïve Bayes
Measures in information retrieval

- Percentage of retrieved documents that are relevant: \(\text{precision} = \frac{TP}{TP + FP} \)
- Percentage of relevant documents that are returned: \(\text{recall} = \frac{TP}{TP + FN} \)
- Precision/recall curves have hyperbolic shape
- Summary measures: average precision at 20%, 50% and 80% recall (three-point average recall)
- \(F\text{-measure} = \frac{2 \times \text{recall} \times \text{precision}}{\text{recall} + \text{precision}} \)
Summary of measures

<table>
<thead>
<tr>
<th>Domain</th>
<th>Plot</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift chart</td>
<td>Marketing</td>
<td>TP / (TP + FN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subset size / (TP + FP + TN + FN)</td>
</tr>
<tr>
<td>ROC curve</td>
<td>Communications</td>
<td>TP rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FP rate</td>
</tr>
<tr>
<td>Recall-precision curve</td>
<td>Information retrieval</td>
<td>Recall Precision = TP / (TP + FN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TP / (TP + FP)</td>
</tr>
</tbody>
</table>
Evaluating numeric prediction

- Same strategies: independent test set, cross-validation, significance tests, etc.
- Difference: error measures
- Actual target values: a_1, a_2, \ldots, a_n
- Predicted target values: p_1, p_2, \ldots, p_n
- Most popular measure: mean-squared error

$$\frac{(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2}{n}$$

- Easy to manipulate mathematically
Other measures

- The root mean-squared error: \[\sqrt{\frac{(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2}{n}} \]

- The mean absolute error is less sensitive to outliers than the mean-squared error:
 \[\frac{|p_1 - a_1| + \ldots + |p_n - a_n|}{n} \]

- Sometimes relative error values are more appropriate (e.g. 10% for an error of 50 when predicting 500)
Improvement on the mean

Often we want to know how much the scheme improves on simply predicting the average.

The relative squared error is (\(\bar{a} \) is the average):

\[
\frac{(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2}{(\bar{a} - a_1)^2 + \ldots + (\bar{a} - a_n)^2}
\]

The relative absolute error is:

\[
\frac{|p_1 - a_1| + \ldots + |p_n - a_n|}{|\bar{a} - a_1| + \ldots + |\bar{a} - a_n|}
\]
The correlation coefficient

- Measures the *statistical correlation* between the predicted values and the actual values

\[
\frac{S_{PA}}{\sqrt{S_P S_A}}
\]

\[
S_{PA} = \frac{\sum_i (p_i - \bar{p})(a_i - \bar{a})}{n-1}
\]

\[
S_P = \frac{\sum_i (p_i - \bar{p})^2}{n-1}
\]

\[
S_A = \frac{\sum_i (a_i - \bar{a})^2}{n-1}
\]

- Scale independent, between –1 and +1
- Good performance leads to large values!
Which measure?

- Best to look at all of them
- Often it doesn’t matter
- Example:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root mean-squared error</td>
<td>67.8</td>
<td>91.7</td>
<td>63.3</td>
<td>57.4</td>
</tr>
<tr>
<td>Mean absolute error</td>
<td>41.3</td>
<td>38.5</td>
<td>33.4</td>
<td>29.2</td>
</tr>
<tr>
<td>Root relative squared error</td>
<td>42.2%</td>
<td>57.2%</td>
<td>39.4%</td>
<td>35.8%</td>
</tr>
<tr>
<td>Relative absolute error</td>
<td>43.1%</td>
<td>40.1%</td>
<td>34.8%</td>
<td>30.4%</td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>0.88</td>
<td>0.88</td>
<td>0.89</td>
<td>0.91</td>
</tr>
</tbody>
</table>
The MDL principle

- MDL stands for *minimum description length*
- The description length is defined as:

 \[
 \text{space required to describe a theory} + \text{space required to describe the theory's mistakes}
 \]
- In our case the theory is the classifier and the mistakes are the errors on the training data
- Aim: we want a classifier with minimal DL
- MDL principle is a *model selection criterion*
Model selection criteria

- Model selection criteria attempt to find a good compromise between:
 A. The complexity of a model
 B. Its prediction accuracy on the training data
- Reasoning: a good model is a simple model that achieves high accuracy on the given data
- Also known as *Occam’s Razor*: the best theory is the smallest one that describes all the facts
Elegance vs. errors

- Theory 1: very simple, elegant theory that explains the data almost perfectly
- Theory 2: significantly more complex theory that reproduces the data without mistakes
- Theory 1 is probably preferable
- Classical example: Kepler’s three laws on planetary motion
 - Less accurate than Copernicus’s latest refinement of the Ptolemaic theory of epicycles
MDL and compression

- The MDL principle is closely related to data compression:
 - It postulates that the best theory is the one that compresses the data the most
 - I.e. to compress a dataset we generate a model and then store the model and its mistakes
- We need to compute (a) the size of the model and (b) the space needed for encoding the errors
- (b) is easy: can use the informational loss function
- For (a) we need a method to encode the model
DL and Bayes’s theorem

- $L[T]$ = “length” of the theory
- $L[E|T]$ = training set encoded wrt. the theory
- Description length = $L[T] + L[E|T]$
- Bayes’s theorem gives us the a posteriori probability of a theory given the data:
 \[
 \Pr[T|E] = \frac{\Pr[E|T] \Pr[T]}{\Pr[E]}
 \]
- Equivalent to:
 \[
 -\log \Pr[T|E] = -\log \Pr[E|T] - \log \Pr[T] + \log \Pr[E]
 \]
MDL and MAP

- MAP stands for *maximum a posteriori probability*
- Finding the MAP theory corresponds to finding the MDL theory
- Difficult bit in applying the MAP principle: determining the prior probability $Pr[T]$ of the theory
- Corresponds to difficult part in applying the MDL principle: coding scheme for the theory
- I.e. if we know a priori that a particular theory is more likely we need less bits to encode it
Discussion of the MDL principle

- Advantage: makes full use of the training data when selecting a model
- Disadvantage 1: appropriate coding scheme/prior probabilities for theories are crucial
- Disadvantage 2: no guarantee that the MDL theory is the one which minimizes the expected error
- Note: Occam’s Razor is an axiom!
- Epicurus’s principle of multiple explanations: keep all theories that are consistent with the data
Bayesian model averaging

- Reflects Epicurus’s principle: all theories are used for prediction weighted according to $P[T|E]$
- Let I be a new instance whose class we want to predict
- Let C be the random variable denoting the class
- Then BMA gives us the probability of C given I, the training data E, and the possible theories T_j:
 \[
 Pr[C | I, E] = \sum_j Pr[C | I, T_j] Pr[T_j | E]
 \]
MDL and clustering

- DL of theory: DL needed for encoding the clusters (e.g. cluster centers)
- DL of data given theory: need to encode cluster membership and position relative to cluster (e.g. distance to cluster center)
- Works if coding scheme needs less code space for small numbers than for large ones
- With nominal attributes, we need to communicate probability distributions for each cluster