Machine Learning Techniques for Data Mining

Eibe Frank
University of Waikato
New Zealand
PART VII

Moving on: Engineering the input and output
Applying a learner is not all

- Already discussed: scheme/parameter selection
 - Important: selection process should be treated as part of the learning process
- Modifying the input: attribute selection, discretization, data cleansing, transformations
- Modifying the output: combining classification models to improve performance
 - Bagging, boosting, stacking, error-correcting output codes (and Bayesian model averaging)
Attribute selection

- Adding a random (i.e. irrelevant) attribute can significantly degrade C4.5’s performance
 - Problem: attribute selection based on smaller and smaller amounts of data
- IBL is also very susceptible to irrelevant attributes
 - Number of training instances required increases exponentially with number of irrelevant attributes
- Naïve Bayes doesn’t have this problem
- Relevant attributes can also be harmful
Scheme-independent selection

- *Filter* approach: assessment based on general characteristics of the data
- One method: find subset of attributes that is enough to separate all the instances
- Another method: use different learning scheme (e.g. C4.5, 1R) to select attributes
- IBL-based attribute weighting techniques can also be used (but can’t find redundant attributes)
- CFS: uses correlation-based evaluation of subsets
Attribute subsets for weather data
Searching the attribute space

- Number of possible attribute subsets is exponential in the number of attributes
- Common greedy approaches: forward selection and backward elimination
- More sophisticated strategies:
 - Bidirectional search
 - Best-first search: can find the optimum solution
 - Beam search: approximation to best-first search
 - Genetic algorithms
Scheme-specific selection

- *Wrapper* approach: attribute selection implemented as wrapper around learning scheme
 - Evaluation criterion: cross-validation performance
- Time consuming: adds factor k^2 even for greedy approaches with k attributes
 - Linearity in k requires prior ranking of attributes
- Scheme-specific attribute selection essential for learning decision tables
- Can be done efficiently for DTs and Naïve Bayes
Discretizing numeric attributes

- Can be used to avoid making normality assumption in Naïve Bayes and Clustering
- Simple discretization scheme is used in 1R
- C4.5 performs *local* discretization
- *Global* discretization can be advantageous because it’s based on more data
 - Learner can be applied to discretized attribute *or*
 - It can be applied to binary attributes coding the cut points in the discretized attribute
Unsupervised discretization

- *Unsupervised* discretization generates intervals without looking at class labels
 - Only possible way when clustering
- Two main strategies:
 - *Equal-interval binning*
 - *Equal-frequency binning* (also called *histogram equalization*)
- Inferior to supervised schemes in classification tasks
Entropy-based discretization

- *Supervised* method that builds a decision tree with pre-pruning on the attribute being discretized
 - Entropy used as splitting criterion
 - MDLP used as stopping criterion
- State-of-the-art discretization method
- Application of MDLP:
 - “Theory” is the splitting point (\(\log_2[N-1]\) bits) plus class distribution in each subset
 - DL before/after adding splitting point is compared
Example: temperature attribute
Formula for MDLP

- N instances and
 - k classes and entropy E in original set
 - k_1 classes and entropy E_1 in first subset
 - k_2 classes and entropy E_2 in first subset

$$\text{gain} > \frac{\log_2 (N - 1)}{N} + \frac{\log_2 (3^k - 2) - kE + k_1 E_1 + k_2 E_2}{N}$$

- Doesn’t result in any discretization intervals for the temperature attribute
Other discretization methods

- Top-down procedure can be replaced by bottom-up method
- MDLP can be replaced by chi-squared test
- Dynamic programming can be used to find optimum k-way split for given additive criterion
 - Requires time quadratic in number of instances if entropy is used as criterion
 - Can be done in linear time if error rate is used as evaluation criterion
Error-based vs. entropy-based
The converse of discretization

- Scheme used by IB1: indicator attributes
- Doesn’t make use of potential ordering information
- M5’ generates ordering of nominal values and codes ordering using binary attributes
- This strategy can be used for any attribute for which values are ordered
 - Avoids problem of using integer attribute to code ordering: would imply a metric
- In general: subsets of attributes coded as binary attributes
Automatic data cleansing

- Improving decision trees: relearn tree with misclassified instances removed
- Better strategy (of course): let human expert check misclassified instances
- When systematic noise is present it’s better not to modify the data
- Also: attribute noise should be left in training set
- (Unsystematic) class noise in training set should be eliminated if possible
Robust regression

- Statistical methods that address problem of outliers are called robust
- Possible way of making regression more robust:
 - Minimize absolute error instead of squared error
 - Remove outliers (i.e. 10% of points farthest from the regression plane)
 - Minimize median instead of mean of squares (copes with outliers in x and y direction)
 - Finds narrowest strip covering half the observations
Example: least median of squares
Detecting anomalies

- Visualization best way of detecting anomalies (but often can’t be done)
- Automatic approach: committee of different learning schemes
 - E.g. decision tree, nearest-neighbor learner, and a linear discriminant function
 - Conservative approach: only delete instances which are incorrectly classified by all of them
 - Problem: might sacrifice instances of small classes
Combining multiple models

- Basic idea of “meta” learning schemes: build different “experts” and let them vote
- Advantage: often improves predictive performance
- Disadvantage: produces output that is very hard to analyze
- Schemes we will discuss: bagging, boosting, stacking, and error-correcting output codes
 - The first three can be applied to both classification and numeric prediction problems
Bagging

- Employs simplest way of combining predictions: voting/averaging
- Each model receives equal weight
- “Idealized” version of bagging:
 - Sample several training sets of size n (instead of just having one training set of size n)
 - Build a classifier for each training set
 - Combine the classifier’s predictions
- This improves performance in almost all cases if learning scheme is *unstable* (i.e. decision trees)
Bias-variance decomposition

- Theoretical tool for analyzing how much specific training set affects performance of classifier
- Assume we have an infinite number of classifiers built from different training sets of size n
 - The bias of a learning scheme is the expected error of the combined classifier on new data
 - The variance of a learning scheme is the expected error due to the particular training set used
 - Total expected error: bias + variance
More on bagging

- Bagging reduces variance by voting/averaging, thus reducing the overall expected error
 - In the case of classification there are pathological situations where the overall error might increase
 - Usually, the more classifiers the better
- Problem: we only have one dataset!
- Solution: generate new datasets of size n by sampling with replacement from original dataset
- Can help a lot if data is noisy
Bagging classifiers

model generation
Let n be the number of instances in the training data.
For each of t iterations:
 Sample n instances with replacement from training set.
 Apply the learning algorithm to the sample.
 Store the resulting model.

classification
For each of the t models:
 Predict class of instance using model.
Return class that has been predicted most often.
Boosting

- Also uses voting/averaging but models are weighted according to their performance
- Iterative procedure: new models are influenced by performance of previously built ones
 - New model is encouraged to become expert for instances classified incorrectly by earlier models
 - Intuitive justification: models should be experts that complement each other
- There are several variants of this algorithm
AdaBoost.M1

model generation
Assign equal weight to each training instance.
For each of t iterations:
 Apply learning algorithm to weighted dataset and store resulting model.
 Compute error e of model on weighted dataset and store error.
 If e equal to zero, or e greater or equal to 0.5:
 Terminate model generation.
 For each instance in dataset:
 If instance classified correctly by model:
 Multiply weight of instance by e / (1 - e).
 Normalize weight of all instances.

classification
Assign weight of zero to all classes.
For each of the t (or less) models:
 Add -\log(e / (1 - e)) to weight of class predicted by model.
Return class with highest weight.
More on boosting

- Can be applied without weights using resampling with probability determined by weights
 - Disadvantage: not all instances are used
 - Advantage: resampling can be repeated if error exceeds 0.5
- Stems from *computational learning theory*
- Theoretical result: training error decreases exponentially
- Also: works if base classifiers not too complex and their error doesn’t become too large too quickly
A bit more on boosting

- Puzzling fact: generalization error can decrease long after training error has reached zero
 - Seems to contradict Occam’s Razor!
 - However, problem disappears if margin (confidence) is considered instead of error
 - Margin: difference between estimated probability for true class and most likely other class (between $-1, 1$)
- Boosting works with weak learners: only condition is that error doesn’t exceed 0.5
- LogitBoost: more sophisticated boosting scheme
Stacking

- Hard to analyze theoretically: “black magic”
- Uses meta learner instead of voting to combine predictions of base learners
 - Predictions of base learners (level-0 models) are used as input for meta learner (level-1 model)
- Base learners usually different learning schemes
- Predictions on training data can’t be used to generate data for level-1 model!
 - Cross-validation-like scheme is employed
More on stacking

- If base learners can output probabilities it’s better to use those as input to meta learner
- Which algorithm to use to generate meta learner?
 - In principle, any learning scheme can be applied
 - David Wolpert: “relatively global, smooth” model
 - Base learners do most of the work
 - Reduces risk of overfitting
- Stacking can also be applied to numeric prediction (and density estimation)
Error-correcting output codes

- Very elegant method of transforming multiclass problem into two-class problem
 - Simple scheme: as many binary class attributes as original classes using one-per-class coding

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td>b</td>
<td>0100</td>
</tr>
<tr>
<td>c</td>
<td>0010</td>
</tr>
<tr>
<td>d</td>
<td>0001</td>
</tr>
</tbody>
</table>

- Idea: use *error-correcting codes* instead
More on ECOCs

- Example:

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1111111</td>
</tr>
<tr>
<td>b</td>
<td>0000111</td>
</tr>
<tr>
<td>c</td>
<td>0011001</td>
</tr>
<tr>
<td>d</td>
<td>0101010</td>
</tr>
</tbody>
</table>

- What’s the true class if base classifiers predict 1011111?

- We want code words for which minimum *hamming distance* between any pair of words d is large
 - Up to $(d-1)/2$ single-bit errors can be corrected
A bit more on ECOCs

- Two criteria for error-correcting output codes:
 - *Row-separation*: minimum distance between rows
 - *Column-separation*: minimum distance between columns (and columns’ complements)
 - Why? Because if columns are identical, base classifiers will make the same errors
 - Error-correction is weakened if errors are correlated

- Only works for problems with more than 3 classes: for 3 classes there are only 2^3 possible columns
Exhaustive ECOCs

- With few classes exhaustive codes can be build (like the one on an earlier slide)
- Exhaustive code for k classes:
 - The columns comprise every possible k-string
 - Except for complements and all-zero/one strings
 - Each code word contains $2^{k-1}-1$ bits
- Code word for 1st class: all ones
- 2nd class: 2^{k-2} zeroes followed by $2^{k-2}-1$ ones
- ith class: alternating runs of 2^{k-i} zeroes and ones, the last run being one short
One last slide on ECOCs

- With more classes, exhaustive codes are infeasible
 - Number of columns increases exponentially
- Random code words have good error-correcting properties on average!
- More sophisticated methods exist for generating ECOCs using a small number of columns
- ECOCs don’t work with NN classifier
 - But: works if different attribute subsets are used to predict each output bit