
A New Clustering Algorithm Using Message Passing and its Applications in
Analyzing Microarray Data

Huimin Geng1, Xutao Deng2 and Hesham Ali2
1Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha,

NE 68198, 2Colleage of Information Science and Technology, University of Nebraska at Omaha,
Omaha, NE 68182

Email: huimingeng@unmc.edu, {xdeng, hali}@mail.unomaha.edu

Abstract

In this paper, we proposed a new clustering
algorithm that employs the concept of message passing
to describe parallel and spontaneous biological
processes. Inspired by real-life situations in which
people in large gatherings form groups by exchanging
messages, Message Passing Clustering (MPC) allows
data objects to communicate with each other and
produces clusters in parallel, thereby making the
clustering process intrinsic and improving the
clustering performance. We have proved that MPC
shares similarity with hierarchical clustering but offers
significantly improved performance because it takes
into account both local and global structure. MPC can
be easily implemented in a parallel computing
platform for the purpose of speed-up. To validate the
MPC method, we applied MPC to microarray data
from the Stanford yeast cell-cycle database. The
results show that MPC gave better clustering solutions
in terms of homogeneity and separation values than
other clustering methods.

1. Introduction

Clustering algorithms are widely used in
bioinformatics to classify data, as in the analysis of
gene expression and the building of phylogenetic trees
[1,2]. In the literature, a vast amount of clustering
algorithms exists, including optimization methods such
as k-means [3], agglomerative algorithms such as
Hierarchical Clustering (HC) [1] and Super
Paramagnetic Clustering (SPC) [4,5], graph theoretical
based algorithms such as CLICK [6] and CAST [7],
and neural network approaches such as Self
Organizing Maps (SOM) [8]. Refer to [9] for the
description and the characteristics of each of the
algorithms and [10] for a comparative review of those

methods in expression profile.
 Among the best-known and most widely accepted

clustering algorithms, are those involving HC. HC
algorithms (the agglomerative manner) proceed from
an initial partition into singleton clusters by successive
merging of clusters until all elements belong to the
same cluster. Different types of linkage (i.e. single,
complete, average, and centroid) can be chosen by the
user to compute the distance of two clusters [11]. HC
arranges the data into a tree structure which can be
easily viewed and understood; and the hierarchical
structure provides potentially useful information about
the relationships between clusters. However, HC has
some inherent problems: HC always puts a priority on
global distance but not honors local structures; that is,
in each step, only the two clusters which have the
globally lowest distance (or highest similarity) are
merged. This mechanism of HC may produce clusters
against intuition and with more singletons (see section
2.3), and may not be suitable for biological data sets as
biological processes are often parallel by nature. As an
example, behavior of multiple genes in a regulatory
network, displayed by microarray technology, is a
parallel process. At a specific time, each gene interacts
only with its local environment. We believe that HC
may not be effective in this case, because the parallel
process and local interaction will not be represented by
HC, which is designed to sequentially merge objects
by global measurements.

To overcome the problems, we propose a new
clustering algorithm, employing the concept of
message passing. Message Passing Clustering (MPC)
allows data objects to communicate with each other,
generates clusters in parallel so that the global
distances and local distances are well-balanced, and
hence improves the performance of clustering. Also,
MPC leads itself very well to the parallel

Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA’05)
0-7695-2495-8/05 $20.00 © 2005 IEEE

implementation. It does not have a sequential
bottleneck. In addition, the proposed message passing
technique can be extended in a number of ways and
opens the door for further development to address
more challenging clustering problems.

 This article is organized as follows. The sequential
algorithms of MPC, the software package, the
properties of MPC and the proofs are given in section
2. The parallel implementation of MPC is illustrated in
Section 3. Section 4 presents artificial and real data
studies. Section 5 summarizes the MPC method and
provides a discussion.

2. Methods

The computing model of the MPC method is
inspired by a common real-life situation. Suppose we
have a social event where people don't know one
another at the beginning of the event. One person may
look around and talk to another person to see if they
share some common interest. If so, they will continue
the conversation and other people with the same
interest may join this group as time passes. It is often
the case that after a while a set of talking groups are
formed at this event. This communication model
shows parallel and spontaneous clustering processes by
exchanging information between people. In the MPC
algorithm, we employ the concept of message passing
to represent the information exchange processes
between data objects. An abstract of a preliminary
version was presented in Geng et al. [12].

2.1 Basic Algorithm

The key idea of MPC is to allow vectors to
communicate with each other so that the clusters can
be formed in parallel. Initially each vector is a cluster
by itself. During the clustering process, each cluster
will send a message to its nearest neighbor (the cluster
which has the maximum similarity to the sending
cluster) by calling function Msg_Send. Each cluster Ci
is associated with two special memory cells, Ci.TO and
Ci.FROM. These two cells function as a message box
with Ci.TO storing the outgoing address and Cj.FROM
storing the incoming address. After sending messages,
each cluster checks the message box by calling
Msg_Rcv. If the outgoing and incoming addresses are
the same, a mutually nearest neighbor (Ci is the nearest
neighbor of Cj and vice versa) is found such that the
two clusters merge to one. This process is repeated
until the number of clusters K is reached, where K can
be any specified number from 1 to n and K is 1 by
default.

2.2 Software Package of MPC

The software of MPC is written in C++ and can be
downloaded in WindowsTM and UNIX platforms at
http://bioinformatics.ist.unomaha.edu/~hgeng/. The
program input is a distance matrix. Users can select:
clustering algorithms— MPC or HC; similarity
metrics— correlation coefficient or Euclidean
distance; similarity linkage— single, complete,
average, or centroids; and cluster display— with or
without branch length. Two files are outputted:
“tree.txt” is used as an input to tree view software,
NJplot [13], to display the clustering dendrogram;
“cluster.txt” contains the information of clustering
processes, including the number of clusters, the size of
each cluster, the data objects in each cluster, and the
average homogeneity and separation values for
evaluating the solution.

2.3. Properties of MPC

While it may appear that MPC and HC produce
similar outputs, we show that, more often than not, the
output clusters of the two approaches differ in favor of
the MPC method.

Definition: A couple is a pair of clusters a and b
such that they are mutually nearest:

,
arg min (,)

i P i a
b D a i

∈ ≠
= and

,
arg min (,),

i P i b
a D b i

∈ ≠
=

where i is any cluster in the current cluster pool P and
D(a, b) is the distance between the cluster a and b.

Algorithm 1. MPC main function

Inputs: m-dimensional vectors X1,X2,…,Xn
Outputs: A partition of X1,X2,…,Xn into K clusters
MPC (X1, X2,…,Xn)

Initialize (X1, X2… Xn);
while (Num_Clusters>K)

 for (each cluster Ci) //message sending
 Cj=Find_Nearest_Neighbor (Ci);
 Msg_Send (Ci,Cj);
 for (each cluster Ci) //message receiving
 Cj=Msg_Rcv (Ci) // check message
 if (Cj not equal to NULL)
 New Cluster C’= Merge (Ci, Cj);

Num_Clusters= Num_Clusters-1;
Msg_Send (Ci, Cj) //send a message from Ci to Cj
 Ci.TO=j;
 Cj.FROM=i;
Msg_Rcv (Ci) //check the message box

 if (Ci.FROM=Ci.TO=j) //find mutually
 return Cj;
 else

 return NULL;

Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA’05)
0-7695-2495-8/05 $20.00 © 2005 IEEE

Theorem 1: The number of new clusters produced
at each round of message exchanging is from 1 to n/2,
where n is the number of clusters at the previous step.

Proof of theorem 1: The number of potential
couples in the cluster pool is from 1 to n/2, so the
proof follows immediately. Theorem 1 shows clusters
merge in an ideally exponential fashion so that MPC is
a conceptually fast algorithm which reflects its parallel
process.

Lemma: Let (a, b) be a couple in the current cluster
pool P, and the similarity criteria be single, complete,
or average linkage, then D(a,b) is bounded by the
following inequalities: (1) (,) (,()), D a b D a b c≤
(2) (,) ((),),D a b D a b c≤ and (3) (,) (, ()).D a b D a c d≤
where c and d can be any clusters except a and b in P.

Proof of the lemma: Since couple is a symmetric
definition, we can exchange a and b in the preceding
lemma. Without any loss of generality, we assume that
the similarity criterion is complete linkage. For single
and average linkage, the lemma can be proved in
similar fashion. We can prove this lemma as follows:
(1) (, ()) max((,), (,)) (,)D a b c D a b D a c D a b= ≥ by the
definition of complete linkage. Similarly,
(2) ((),) max((,), (,)) (,) (,)D a b c D a c D b c D a c D a b= ≥ ≥
(3) (, ()) max((,), (,)) (,) (,)D a c d D a c D a d D a c D a b= ≥ ≥

It is important to note that the lemma does not apply
to the case of centroid linkage because the centroid of
a cluster is able to “move” during the clustering
process by merging with other clusters and hence the
distance between two clusters is not “fixed”.

Theorem 2: Comparing MPC and HC in various
similarity criteria, the following propositions hold:
i). In the case of centroid linkage, the clustering
dendrogram from MPC and HC are generally different.
ii). In the case of single, complete, or average linkage,
a). the final clustering dendrogram from MPC and HC
are equivalent; b). But intermediate clusters from MPC
and HC are generally different. If the number of final
clusters is specified in advance, MPC and HC may
yield different solutions.

Proof of i): Due to the different merging strategies
between MPC and HC, the centroids in the two
methods are generally different, hence the clustering
dendrogram are generally different. We want to show
one example. Suppose there are four two-dimensional
data objects a, b, c and d with the coordinates given in
Figure 1. MPC merges (a b) and (c d) at the same step,
while HC merges only (a b) at the first step, and then
updates the distance table. Since the distance between
c and the centroid of (ab) is less than the distance
between c and d, c is grouped with (ab) at the second
step (Figure 2). The solution given by MPC conforms
to our intuition, while the solution from HC does not.

Proof of ii)-a): A dendrogram is a tree representing
the merging processes controlled by the clustering
algorithm. A branch in a dendrogram represents a
“marriage” of two data objects in a couple. Now we
show by induction that MPC and HC produce the same
dendrogram in the case of single, complete and
average linkage.

Basis: In the leaves level, each data object is a
cluster. MPC and HC have the same dendrogram.

Induction: Assume that at some step, MPC and HC
has exactly the same dendrogram. We want to show
that a branch produced by merging a couple in MPC
should have a correspondence in HC. Suppose we
identify a couple (a, b) which is about to merge in
MPC. From (3) in the lemma, (,) (,())D a b D a c d≤ ,
we see that (a, b) still remains a couple even if other
couple (c, d) may be formed before the marriage of (a,
b) in HC. So the same branch representing the merging
of (a, b) will be preserved in HC.

Proof of ii)-b): Figure 3 shows an example of
different solutions from MPC and HC when the
number of clusters is three. In HC, there are two
singletons, d and e. While in MPC, though the distance
between d and e are large, they are, relatively, closest
to each other as compared to other nodes, so d and e
are grouped if considering not only global distance but
also local distance.

a b

c d

(ab)

(0,0) (0.5, 0) (1,0)

(0.5, 0.95) (1.45,1.26)

a b

c d

(ab)

(0,0) (0.5, 0) (1,0)

(0.5, 0.95) (1.45,1.26)

a b c d a b c d

MPC HC

a b c d a b c d

MPC HC

a b

c

d e

HC

a b

c

d e

HC

a b

c

d e

a b

c

d e

Original Data Sets MPC

a b

c

d e

a b

c

d e

Original Data Sets MPC

a b

c

d e

HC

a b

c

d e

HC

a b

c

d e

HC

a b

c

d e

HC

a b

c

d e

a b

c

d e

Original Data Sets MPC

a b

c

d e

a b

c

d e

Original Data Sets MPC

Figure 1. Coordinates. Figure 2. Different dendrogram. Figure 3. Clustering results of MPC, HC.

3. Parallel Implementation of MPC Clustering algorithms are often used to analyze
large biological data. Hence efficient implementations

Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA’05)
0-7695-2495-8/05 $20.00 © 2005 IEEE

of clustering algorithms are highly desirable.
Additionally, with the recent advances in computer
hardwires, massive parallel machines (such as cluster
computing facilities) are currently available and
relatively inexpensive. The basic MPC algorithm can
be implemented as a sequential algorithm in a single
processor machine, as shown in 2.1. However, due to
the parallel nature of MPC, we can easily implement it
on a multiprocessor platform to enhance the speed of
processing. As an example, we show a parallel
implementation of the single-linkage on Concurrent
Read Concurrent Write (CRCW) Parallel Random
Access Machines (PRAMs) to emulate the message
passing scenario. PRAMs allow multiprocessors to
access a single shared parallel memory simultaneously.
CRCW allows processors to concurrently write to or
read from any location on the shared memory. The
parallel computing model is illustrated in Figure 4.

Figure 4. Parallel computing model of MPC.

In this model, each cluster will be the responsibility
of one processor, so n processors are needed to
perform the clustering of n data objects. When two
clusters are agglomerated, the lower numbered
processor corresponding to the two clusters takes over
full responsibility for the new cluster. If one processor
no longer has any clusters in its responsibility it
becomes idle. In addition to the mail box memory,
each processor i maintains an array Ai of the distances
between the cluster Ci and the other clusters. We use a
special array B to store the nearest neighbor for each
cluster to speed up the searching. The parallel
algorithm is described in Algorithm 2.

To update the data structure, each processor k
updates the inter-cluster distance array Ak to reflect the
new distance between its clusters and the newly
agglomerated cluster. For each cluster it is responsible
for, each processor must thus update a single location
in the array. No operation need be performed for the
newly agglomerated clusters, since the new distances
will be determined by the remaining clusters. Step 1 is
performed once and step 2, 3, 4 and 5 are performed n
times, so the parallel algorithm has a time complexity
O(n). The implementation of MPC using other
similarity criteria can be handled in the similar fashion
with complexity O(n).

Algorithm 2: Parallel Algorithm of MPC

1. Generate distance array Ai on each processor i and store
the nearest neighbors in the special array B. O(n)
2. Obtain the nearest neighbor on each processor i. O(1)
3. Identify couples by message sending and receiving on
each processor i. O(1)
4. For each couple (i, j), do the following:

4.1 Update distance array Ak on each processor k,
where k is any processor other than i and j. O(1)

4.2 Update B on each processor. O(1)
4.3 Merge couple (i,j) by dropping processor j (i<j).

O(1)
5. If two or more processors remain, go to step 2.

4. Results

We test the validity of the MPC method with both
artificial and real microarray gene expression data.
Centroid criterion was used in both studies. We used
Euclidean distance in 4.1 and the correlation
coefficient in 4.2.

4.1. Illustrative Data Sets

An online simulator, eXPatGen [14], was used to
generate artificial gene expression data, for which the
classes are known. Figure 5 demonstrates the
methodology of evaluating MPC with the artificial
data. Employing the user-defined inputs (such as gene
groups) to the simulator, dynamic mRNA profiles
similar to those produced from microarray experiments
were generated. Then the proposed method was
applied in the analysis of the data and the results were
directly compared to the initial input.

Expression
Models

Simulator

Expression Data
Distance Matrices

MPC
Method

User Defined Input
Expression Model Parameters

Gene Grouping, &
Regulatory Networks

Comparison

MPC Output
Gene Grouping

Yes

No

Hit

Miss

Expression
Models

Simulator

Expression Data
Distance Matrices

MPC
Method

User Defined Input
Expression Model Parameters

Gene Grouping, &
Regulatory Networks

Comparison

MPC Output
Gene Grouping

Yes

No

Hit

Miss

Figure 5. Methodology of evaluating MPC
with the simulated data.

We show one example which contains 10 groups of
genes, with 10 genes in each group. By setting
parameters, we can control which genes are induced or
repressed by which genes, define the transcription

Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA’05)
0-7695-2495-8/05 $20.00 © 2005 IEEE

dynamics for each gene, and hence determine the gene
expression patterns (Figure 6). Applying the proposed
method to this data set, we found that the clustered
display (Figure 7) includes exactly nine clusters, with
each cluster presenting one gene group. Note, A and B
belong to one cluster since they have the same
dynamic expression profile. In total, we tested 35 data
sets. For each data set, 10 to 100 genes with dimension
ranging from 20 to 40 were included. A 95% hit rate
was achieved, in which 639 of 674 genes were
correctly clustered. This study shows that MPC has
high accuracy and stability.

Figure 6. Dynamic expression profiles [14].

Figure 7. Clustered display of the simulated data set using the MPC method.

4.2. Gene Expression Data

Spellman et al. [15] identified 800 genes that are
cell-cycle regulated from the Stanford yeast cell-cycle
database (http://cellcycle-www.stanford.edu), and
Shamir et al. [9] selected 698 of those 800 genes,
which have no missing entries, over 72 conditions, to
evaluate different clustering algorithms: K-means,
CAST, SOM, CLICK and “Heuristic”. In order to
compare MPC with those methods, we analyzed this
698×72 data set and set up the experiment with the
same parameters as those chosen in [9]. Based on the
analysis conducted by Spellman et al., we expect to
find in the data five main clusters (G1-peaking, S-
peaking, G2-peaking, M-peaking, and M/G1-peaking
genes), and compare different solutions in terms of the
homogeneity and separation values since the true
clusters are unknown.

Homogeneity is an intra-cluster measure; a good
homogeneity indicates objects in the same cluster are
highly similar to each other. Separation is an inter-
cluster measure; a good separation means objects
from different clusters have low similarity to each
other. The average homogeneity and average
separation are defined as:

∑
∈

=
NX

Ave XClXS
N

H))(,(
||

1

∑∑ ≠
≠

=
ji

jiji

ji
ji

Ave CCSCC
CC

S),(||||
||||

1

where X is a data object, Cl(X) is a cluster which X
belongs to, N is the set of all data objects in the cluster,
and Ci and Cj denote disjoint clusters. Recall that S is
the similarity between two data objects.

Table 2 shows the solutions produced by each
program and their homogeneity and separation
parameters. GeneCluster is clustering software which
uses the SOM algorithm. The so-called “Heuristic”
solution is not the true solution, but it is obtained
manually by inspecting the expression patterns and
comparing to the literature [15]. We found that MPC
identified five main clusters, as it should be, and gave
relatively low homogeneity and high separation values.

Table 2. A Comparison of Clustering Solutions
Program # Clusters Homogeneity Separation

K-Means 49 0.629 0.086
CAST 5 0.6 -0.146
GeneCluster 6 0.617 -0.073
CLICK 6 0.656 -0.098
“Heuristic” 5 0.572 -0.133
MPC 5 0.593 -0.152

Figure 8 gives a comparison of homogeneity and
separation values for all solutions. We say a clustering
solution has high quality if HAve is relatively high
and/or SAve is relatively low. So the ideal point is the
lower right corner where both are good. However,
homogeneity and separation are two conflicting
parameters; Improvement of one will deteriorate the

A&B

J H I F
E G

 C D

Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA’05)
0-7695-2495-8/05 $20.00 © 2005 IEEE

other. In Figure 8, we find MPC gives a competitive
solution which is closest to the “Heuristic” solution.

Comparison of Clustering Algorithms

K_Means

CAST

GeneCluster
CLICK

“Heuristic"

MPC
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.53 0.58 0.63 0.68

Homogeneity

Se
pa

ra
tio

n Comparison of Clustering Algorithms

K_Means

CAST

GeneCluster
CLICK

“Heuristic"

MPC
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.53 0.58 0.63 0.68

Homogeneity

Se
pa

ra
tio

n

Figure 8. A comparison of homogeneity and
separation values for all solutions.

5. Conclusions and Discussion

In this paper we addressed the intrinsic problems of
HC by proposing a new clustering algorithm which
employs the concept of message passing. By taking
advantage of the communication among data objects
and by taking into account both local and global
structure, MPC can describe parallel and spontaneous
biological processes more precisely. In addition to be
performed in a single processor machine, MPC can be
easily implemented in powerful and efficient parallel
computing platforms. In the testing results, a 95% hit
rate was achieved for the simulated gene expression
data, and a partition closest to the “Heuristic” solution
was obtained for the real yeast cell-cycle gene
expression data.

One advantage of MPC is its flexible structure. We
could change the message type and the way the
message is handled to deal with more challenging
situations. For example, MPC can easily deal with the
data set consisting of a mixture of data types. Another
advantage of MPC is that it can be developed further to
incorporate additional advanced features, such as
undoing clusters. We could send messages from each
cluster to multiple clusters and assign merging
probabilities to those messages. In the receiver side, we
recalculate the probability of each node which was
already in the cluster and kick out those no longer
having good probability, so that the irreversible
problem in HC is solved.

Acknowledgements
This work was supported by the NIH grant number
P20 RR16469 from the INBRE program of the
National Center for Research Resources.

References

[1] Eisen M.B., Spellman P.T., Brown P.O., and Botstein
D. “Cluster analysis and display of genome-wide
expression patterns”, PNAS, U S A, 95, 14863-14868,
1998.

[2] Nei M. and Kumar S. Molecular Evolution and
Phylogenetics. Oxford University Press, New York,
2000.

[3] Herwig R., Poustka A. J., Meuller C., Lehrach H., and
O'Brien J. “Large-scale clustering of cDNA-
fingerprinting data”, Genome Research, 9(11), 1093-
1105, 1999.

[4] Getz, G., Levine, E. and Domany, E. “Coupled two-way
clustering analysis of gene microarray data”, PNAS, 97,
12079-12084, 2000.

[5] Blatt M., Wiseman S., and Domany E. “Super-
paramagnetic clustering of data”, Physical Review
Letters 76, 3251-3254, 1996.

[6] Sharan R. and Shamir R. “CLICK: A clustering
algorithm with applications to gene expression
analysis”, In Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular
Biology (ISMB), 307-316, 2000.

[7] Ben-Dor, Shamir R., and Yakhini Z. “Clustering Gene
Expression Patterns”, J. Comput. Biol., 6, 281-297,
1999.

[8] Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan
S., Dmitrovsky E., Lander E. S., and Golub T.R.
“Interpreting patterns of gene expression with self-
organizing maps: Methods and application to
hematopoietic differentiation”, PNAS, 96, 2907-2912,
1999.

[9] Shamir R., and Sharan R. “Algorithmic Approaches to
Clustering Gene Expression Data”, Current Topics in
Computational Molecular Biology, 269-300, MIT Press,
2000.

[10] Tseng. G.C. “A Comparative Review of Gene
Clustering in Expression Profile”. Proceedings of the
8th International Conference on Control, Automation,
Robotics and Vision (ICARCV), 1320-1324, 2004.

[11] Gibbons F.D. and Roth F.P. “Judging the quality of
gene expression-based clustering methods using gene
annotation”. Genome Res., 12, 1574–1581, 2002.

[12] Geng H., Bastola D. and Ali H.H. “A New Approach to
Clustering Biological Data Using Message Passing”, In
Proceedings of 2004 IEEE Computer Society
Bioinformatics Conference (CSB), 493-494, best poster
awards, 2004.

[13] Perrière G. and Gouy M. “WWW-Query: An on-line
retrieval system for biological sequence banks”,
Biochimie, 78, 364-369, 1996.

[14] Michaud D.J., Marsh A.G., and Dhurjati P.S.
“eXPatGen: generating dynamic expression patterns for
the systematic evaluation of analytical methods”,
Bioinformatics, 19, 1140-1146, 2003.

[15] Spellman P.T., Sherlock G., Zhang M.Q., Iyer V.R.,
Anders K., Eisen M.B., Brown P.O., Botstein D., and
Futcher B. “Comprehensive Identification of Cell
Cycle-regulated Genes of the Yeast Saccharomyces
cerevisiae by Microarray Hybridization”, Molecular
Biology of the Cell, 9, 3273-3297, 1998.

Proceedings of the Fourth International Conference on Machine Learning and Applications (ICMLA’05)
0-7695-2495-8/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

