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Abstract 

In this paper, we proposed a new clustering 
algorithm that employs the concept of message passing 
to describe parallel and spontaneous biological 
processes. Inspired by real-life situations in which 
people in large gatherings form groups by exchanging 
messages, Message Passing Clustering (MPC) allows 
data objects to communicate with each other and 
produces clusters in parallel, thereby making the 
clustering process intrinsic and improving the 
clustering performance. We have proved that MPC 
shares similarity with hierarchical clustering but offers 
significantly improved performance because it takes 
into account both local and global structure. MPC can 
be easily implemented in a parallel computing 
platform for the purpose of speed-up. To validate the 
MPC method, we applied MPC to microarray data 
from the Stanford yeast cell-cycle database. The 
results show that MPC gave better clustering solutions 
in terms of homogeneity and separation values than 
other clustering methods.  

1. Introduction 

Clustering algorithms are widely used in 
bioinformatics to classify data, as in the analysis of 
gene expression and the building of phylogenetic trees 
[1,2]. In the literature, a vast amount of clustering 
algorithms exists, including optimization methods such 
as k-means [3], agglomerative algorithms such as 
Hierarchical Clustering (HC) [1] and Super 
Paramagnetic Clustering (SPC) [4,5], graph theoretical 
based algorithms such as CLICK [6] and CAST [7], 
and neural network approaches such as Self 
Organizing Maps (SOM) [8]. Refer to [9] for the 
description and the characteristics of each of the 
algorithms and [10] for a comparative review of those 

methods in expression profile.
 Among the best-known and most widely accepted 

clustering algorithms, are those involving HC. HC 
algorithms (the agglomerative manner) proceed from 
an initial partition into singleton clusters by successive 
merging of clusters until all elements belong to the 
same cluster. Different types of linkage (i.e. single, 
complete, average, and centroid) can be chosen by the 
user to compute the distance of two clusters [11]. HC 
arranges the data into a tree structure which can be 
easily viewed and understood; and the hierarchical 
structure provides potentially useful information about 
the relationships between clusters. However, HC has 
some inherent problems: HC always puts a priority on 
global distance but not honors local structures; that is, 
in each step, only the two clusters which have the 
globally lowest distance (or highest similarity) are 
merged. This mechanism of HC may produce clusters 
against intuition and with more singletons (see section 
2.3), and may not be suitable for biological data sets as 
biological processes are often parallel by nature. As an 
example, behavior of multiple genes in a regulatory 
network, displayed by microarray technology, is a 
parallel process. At a specific time, each gene interacts 
only with its local environment. We believe that HC 
may not be effective in this case, because the parallel 
process and local interaction will not be represented by 
HC, which is designed to sequentially merge objects 
by global measurements. 

To overcome the problems, we propose a new 
clustering algorithm, employing the concept of 
message passing. Message Passing Clustering (MPC) 
allows data objects to communicate with each other, 
generates clusters in parallel so that the global 
distances and local distances are well-balanced, and 
hence improves the performance of clustering. Also, 
MPC leads itself very well to the parallel 
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implementation. It does not have a sequential 
bottleneck. In addition, the proposed message passing 
technique can be extended in a number of ways and 
opens the door for further development to address 
more challenging clustering problems. 

 This article is organized as follows. The sequential 
algorithms of MPC, the software package, the 
properties of MPC and the proofs are given in section 
2. The parallel implementation of MPC is illustrated in 
Section 3. Section 4 presents artificial and real data 
studies. Section 5 summarizes the MPC method and 
provides a discussion. 

2. Methods 

The computing model of the MPC method is 
inspired by a common real-life situation. Suppose we 
have a social event where people don't know one 
another at the beginning of the event. One person may 
look around and talk to another person to see if they 
share some common interest. If so, they will continue 
the conversation and other people with the same 
interest may join this group as time passes. It is often 
the case that after a while a set of talking groups are 
formed at this event. This communication model 
shows parallel and spontaneous clustering processes by 
exchanging information between people. In the MPC 
algorithm, we employ the concept of message passing 
to represent the information exchange processes 
between data objects. An abstract of a preliminary 
version was presented in Geng et al. [12]. 

2.1 Basic Algorithm 

The key idea of MPC is to allow vectors to 
communicate with each other so that the clusters can 
be formed in parallel. Initially each vector is a cluster 
by itself. During the clustering process, each cluster 
will send a message to its nearest neighbor (the cluster 
which has the maximum similarity to the sending 
cluster) by calling function Msg_Send. Each cluster Ci
is associated with two special memory cells, Ci.TO and
Ci.FROM. These two cells function as a message box 
with Ci.TO storing the outgoing address and Cj.FROM
storing the incoming address. After sending messages, 
each cluster checks the message box by calling 
Msg_Rcv. If the outgoing and incoming addresses are 
the same, a mutually nearest neighbor (Ci is the nearest 
neighbor of Cj and vice versa) is found such that the 
two clusters merge to one. This process is repeated 
until the number of clusters K is reached, where K can 
be any specified number from 1 to n and K is 1 by 
default.  

2.2 Software Package of MPC 

The software of MPC is written in C++ and can be 
downloaded in WindowsTM and UNIX platforms at 
http://bioinformatics.ist.unomaha.edu/~hgeng/. The 
program input is a distance matrix. Users can select: 
clustering algorithms— MPC or HC; similarity 
metrics— correlation coefficient or Euclidean 
distance; similarity linkage— single, complete, 
average, or centroids; and cluster display— with or 
without branch length. Two files are outputted: 
“tree.txt” is used as an input to tree view software, 
NJplot [13], to display the clustering dendrogram; 
“cluster.txt” contains the information of clustering 
processes, including the number of clusters, the size of 
each cluster, the data objects in each cluster, and the 
average homogeneity and separation values for 
evaluating the solution.  

2.3. Properties of MPC 

While it may appear that MPC and HC produce 
similar outputs, we show that, more often than not, the 
output clusters of the two approaches differ in favor of 
the MPC method.  

Definition: A couple is a pair of clusters a and b
such that they are mutually nearest: 

,
arg min ( , ) 

i P i a
b D a i

∈ ≠
=  and 

,
arg min ( , ),

i P i b
a D b i

∈ ≠
=

where i is any cluster in the current cluster pool P and 
D(a, b) is the distance between the cluster a and b.

Algorithm 1. MPC main function 

Inputs: m-dimensional vectors X1,X2,…,Xn
Outputs: A partition of X1,X2,…,Xn into K clusters 
MPC (X1, X2,…,Xn)

Initialize (X1, X2… Xn); 
while (Num_Clusters>K) 

               for (each cluster Ci) //message sending
                       Cj=Find_Nearest_Neighbor (Ci);
                       Msg_Send (Ci,Cj);
               for (each cluster Ci) //message receiving
                       Cj=Msg_Rcv (Ci) // check message
                       if (Cj not equal to NULL)
                              New Cluster C’= Merge (Ci, Cj); 

Num_Clusters= Num_Clusters-1;
Msg_Send (Ci, Cj) //send a message from Ci to Cj
           Ci.TO=j;  
           Cj.FROM=i;
Msg_Rcv (Ci) //check the message box 

  if  (Ci.FROM=Ci.TO=j) //find mutually  
         return Cj;
  else 

                        return NULL;
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Theorem 1: The number of new clusters produced 
at each round of message exchanging is from 1 to n/2, 
where n is the number of clusters at the previous step. 

Proof of theorem 1: The number of potential 
couples in the cluster pool is from 1 to n/2, so the 
proof follows immediately. Theorem 1 shows clusters 
merge in an ideally exponential fashion so that MPC is 
a conceptually fast algorithm which reflects its parallel 
process. 

Lemma: Let (a, b) be a couple in the current cluster 
pool P, and the similarity criteria be single, complete, 
or average linkage, then D(a,b) is bounded by the 
following inequalities: (1) ( , ) ( ,( )),  D a b D a b c≤     
(2) ( , ) (( ), ),D a b D a b c≤  and (3) ( , ) ( , ( )).D a b D a c d≤
where c and d can be any clusters except a and b in P.

Proof of the lemma: Since couple is a symmetric 
definition, we can exchange a and b in the preceding 
lemma. Without any loss of generality, we assume that 
the similarity criterion is complete linkage. For single 
and average linkage, the lemma can be proved in 
similar fashion. We can prove this lemma as follows: 
(1) ( , ( )) max( ( , ), ( , )) ( , )D a b c D a b D a c D a b= ≥  by the 
definition of complete linkage. Similarly,  
(2) (( ), ) max( ( , ), ( , )) ( , ) ( , )D a b c D a c D b c D a c D a b= ≥ ≥
(3) ( , ( )) max( ( , ), ( , )) ( , ) ( , )D a c d D a c D a d D a c D a b= ≥ ≥

It is important to note that the lemma does not apply 
to the case of centroid linkage because the centroid of 
a cluster is able to “move” during the clustering 
process by merging with other clusters and hence the 
distance between two clusters is not “fixed”.                                                                                             

Theorem 2: Comparing MPC and HC in various 
similarity criteria, the following propositions hold: 
i). In the case of centroid linkage, the clustering 
dendrogram from MPC and HC are generally different.  
ii). In the case of single, complete, or average linkage, 
a). the final clustering dendrogram from MPC and HC 
are equivalent; b). But intermediate clusters from MPC 
and HC are generally different. If the number of final 
clusters is specified in advance, MPC and HC may 
yield different solutions.  

Proof of i): Due to the different merging strategies 
between MPC and HC, the centroids in the two 
methods are generally different, hence the clustering 
dendrogram are generally different. We want to show 
one example. Suppose there are four two-dimensional 
data objects a, b, c and d with the coordinates given in 
Figure 1. MPC merges (a b) and (c d) at the same step, 
while HC merges only (a b) at the first step, and then 
updates the distance table. Since the distance between 
c and the centroid of (ab) is less than the distance 
between c and d, c is grouped with (ab) at the second 
step (Figure 2). The solution given by MPC conforms 
to our intuition, while the solution from HC does not. 

Proof of ii)-a): A dendrogram is a tree representing 
the merging processes controlled by the clustering 
algorithm. A branch in a dendrogram represents a 
“marriage” of two data objects in a couple. Now we 
show by induction that MPC and HC produce the same 
dendrogram in the case of single, complete and 
average linkage. 

Basis: In the leaves level, each data object is a 
cluster. MPC and HC have the same dendrogram. 

Induction: Assume that at some step, MPC and HC 
has exactly the same dendrogram. We want to show 
that a branch produced by merging a couple in MPC 
should have a correspondence in HC. Suppose we 
identify a couple (a, b) which is about to merge in 
MPC. From (3) in the lemma, ( , ) ( ,( ))D a b D a c d≤ ,
we see that (a, b) still remains a couple even if other 
couple (c, d) may be formed before the marriage of (a, 
b) in HC. So the same branch representing the merging 
of (a, b) will be preserved in HC.  

Proof of ii)-b): Figure 3 shows an example of 
different solutions from MPC and HC when the 
number of clusters is three. In HC, there are two 
singletons, d and e. While in MPC, though the distance 
between d and e are large, they are, relatively, closest 
to each other as compared to other nodes, so d and e
are grouped if considering not only global distance but 
also local distance.
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Figure 1. Coordinates. Figure 2. Different dendrogram. Figure 3. Clustering results of MPC, HC. 

3. Parallel Implementation of MPC Clustering algorithms are often used to analyze 
large biological data. Hence efficient implementations 
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of clustering algorithms are highly desirable. 
Additionally, with the recent advances in computer 
hardwires, massive parallel machines (such as cluster 
computing facilities) are currently available and 
relatively inexpensive. The basic MPC algorithm can 
be implemented as a sequential algorithm in a single 
processor machine, as shown in 2.1. However, due to 
the parallel nature of MPC, we can easily implement it 
on a multiprocessor platform to enhance the speed of 
processing. As an example, we show a parallel 
implementation of the single-linkage on Concurrent 
Read Concurrent Write (CRCW) Parallel Random 
Access Machines (PRAMs) to emulate the message 
passing scenario. PRAMs allow multiprocessors to 
access a single shared parallel memory simultaneously. 
CRCW allows processors to concurrently write to or 
read from any location on the shared memory. The 
parallel computing model is illustrated in Figure 4.  

Figure 4. Parallel computing model of MPC. 

In this model, each cluster will be the responsibility 
of one processor, so n processors are needed to 
perform the clustering of n data objects. When two 
clusters are agglomerated, the lower numbered 
processor corresponding to the two clusters takes over 
full responsibility for the new cluster. If one processor 
no longer has any clusters in its responsibility it 
becomes idle. In addition to the mail box memory, 
each processor i maintains an array Ai of the distances 
between the cluster Ci and the other clusters. We use a 
special array B to store the nearest neighbor for each 
cluster to speed up the searching. The parallel 
algorithm is described in Algorithm 2.  

To update the data structure, each processor k
updates the inter-cluster distance array Ak to reflect the 
new distance between its clusters and the newly 
agglomerated cluster. For each cluster it is responsible 
for, each processor must thus update a single location 
in the array. No operation need be performed for the 
newly agglomerated clusters, since the new distances 
will be determined by the remaining clusters. Step 1 is 
performed once and step 2, 3, 4 and 5 are performed n
times, so the parallel algorithm has a time complexity 
O(n). The implementation of MPC using other 
similarity criteria can be handled in the similar fashion 
with complexity O(n).

Algorithm 2: Parallel Algorithm of MPC

1. Generate distance array Ai on each processor i and store 
the nearest neighbors in the special array B. O(n)
2. Obtain the nearest neighbor on each processor i. O(1)
3. Identify couples by message sending and receiving on 
each processor i. O(1)
4. For each couple (i, j), do the following: 

4.1 Update distance array Ak on each processor k,
where k is any processor other than i and j. O(1)

4.2 Update B on each processor.  O(1)
4.3 Merge couple (i,j) by dropping processor j (i<j).  

O(1)
5. If two or more processors remain, go to step 2.  

4. Results 

We test the validity of the MPC method with both 
artificial and real microarray gene expression data. 
Centroid criterion was used in both studies. We used 
Euclidean distance in 4.1 and the correlation 
coefficient in 4.2.  

4.1. Illustrative Data Sets 

An online simulator, eXPatGen [14], was used to 
generate artificial gene expression data, for which the 
classes are known. Figure 5 demonstrates the 
methodology of evaluating MPC with the artificial 
data. Employing the user-defined inputs (such as gene 
groups) to the simulator, dynamic mRNA profiles 
similar to those produced from microarray experiments 
were generated. Then the proposed method was 
applied in the analysis of the data and the results were 
directly compared to the initial input.  

Expression 
Models

Simulator

Expression Data
Distance Matrices

MPC 
Method

User Defined Input
Expression Model Parameters

Gene Grouping, &
Regulatory Networks

Comparison

MPC Output
Gene Grouping

Yes

No

Hit

Miss

Expression 
Models

Simulator

Expression Data
Distance Matrices

MPC 
Method

User Defined Input
Expression Model Parameters

Gene Grouping, &
Regulatory Networks

Comparison

MPC Output
Gene Grouping

Yes

No

Hit

Miss

Figure 5.  Methodology of evaluating MPC 
with the simulated data. 

We show one example which contains 10 groups of 
genes, with 10 genes in each group. By setting 
parameters, we can control which genes are induced or 
repressed by which genes, define the transcription 
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dynamics for each gene, and hence determine the gene 
expression patterns (Figure 6). Applying the proposed 
method to this data set, we found that the clustered 
display (Figure 7) includes exactly nine clusters, with 
each cluster presenting one gene group. Note, A and B 
belong to one cluster since they have the same 
dynamic expression profile. In total, we tested 35 data 
sets. For each data set, 10 to 100 genes with dimension 
ranging from 20 to 40 were included. A 95% hit rate 
was achieved, in which 639 of 674 genes were 
correctly clustered. This study shows that MPC has 
high accuracy and stability. 

Figure 6. Dynamic expression profiles [14]. 

Figure 7. Clustered display of the simulated data set using the MPC method. 

4.2. Gene Expression Data 

Spellman et al. [15] identified 800 genes that are 
cell-cycle regulated from the Stanford yeast cell-cycle 
database (http://cellcycle-www.stanford.edu), and 
Shamir et al. [9] selected 698 of those 800 genes, 
which have no missing entries, over 72 conditions, to 
evaluate different clustering algorithms: K-means, 
CAST, SOM, CLICK and “Heuristic”. In order to 
compare MPC with those methods, we analyzed this 
698×72 data set and set up the experiment with the 
same parameters as those chosen in [9]. Based on the 
analysis conducted by Spellman et al., we expect to 
find in the data five main clusters (G1-peaking, S-
peaking, G2-peaking, M-peaking, and M/G1-peaking 
genes), and compare different solutions in terms of the 
homogeneity and separation values since the true 
clusters are unknown.  

Homogeneity is an intra-cluster measure; a good 
homogeneity indicates objects in the same cluster are 
highly similar to each other. Separation is an inter-
cluster measure; a good separation means objects 
from different clusters have low similarity to each 
other. The average homogeneity and average 
separation are defined as:

∑
∈

=
NX

Ave XClXS
N

H ))(,(
||

1

∑∑ ≠
≠

=
ji

jiji

ji
ji

Ave CCSCC
CC

S ),(||||
||||

1

where X is a data object, Cl(X) is a cluster which X
belongs to, N is the set of all data objects in the cluster, 
and Ci and Cj denote disjoint clusters. Recall that S is 
the similarity between two data objects.  

Table 2 shows the solutions produced by each 
program and their homogeneity and separation 
parameters. GeneCluster is clustering software which 
uses the SOM algorithm. The so-called “Heuristic” 
solution is not the true solution, but it is obtained 
manually by inspecting the expression patterns and 
comparing to the literature [15]. We found that MPC 
identified five main clusters, as it should be, and gave 
relatively low homogeneity and high separation values. 

Table 2. A Comparison of Clustering Solutions 
Program # Clusters Homogeneity Separation 

K-Means 49 0.629 0.086 
CAST 5 0.6 -0.146 
GeneCluster 6 0.617 -0.073 
CLICK 6 0.656 -0.098 
“Heuristic” 5 0.572 -0.133 
MPC 5 0.593 -0.152 

Figure 8 gives a comparison of homogeneity and 
separation values for all solutions. We say a clustering 
solution has high quality if HAve is relatively high 
and/or SAve is relatively low. So the ideal point is the 
lower right corner where both are good. However, 
homogeneity and separation are two conflicting 
parameters; Improvement of one will deteriorate the 
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other.  In Figure 8, we find MPC gives a competitive 
solution which is closest to the “Heuristic” solution. 
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Figure 8. A comparison of homogeneity and 
separation values for all solutions. 

5. Conclusions and Discussion 

In this paper we addressed the intrinsic problems of 
HC by proposing a new clustering algorithm which 
employs the concept of message passing. By taking 
advantage of the communication among data objects 
and by taking into account both local and global 
structure, MPC can describe parallel and spontaneous 
biological processes more precisely. In addition to be 
performed in a single processor machine, MPC can be 
easily implemented in powerful and efficient parallel 
computing platforms. In the testing results, a 95% hit 
rate was achieved for the simulated gene expression 
data, and a partition closest to the “Heuristic” solution 
was obtained for the real yeast cell-cycle gene 
expression data. 

One advantage of MPC is its flexible structure. We 
could change the message type and the way the 
message is handled to deal with more challenging 
situations. For example, MPC can easily deal with the 
data set consisting of a mixture of data types. Another 
advantage of MPC is that it can be developed further to 
incorporate additional advanced features, such as 
undoing clusters. We could send messages from each 
cluster to multiple clusters and assign merging 
probabilities to those messages. In the receiver side, we 
recalculate the probability of each node which was 
already in the cluster and kick out those no longer 
having good probability, so that the irreversible 
problem in HC is solved.  
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