
CliNER: A Lightweight Tool for Clinical Named Entity Recognition
William Boag§, Kevin Wacome§, Tristan Naumann¥, Anna Rumshisky§

§Text Machine Lab for Natural Language Processing, UMass Lowell
¥Clinical Decision-Making Group, MIT CSAIL

What is CliNER?Named Entity Recognition
• Named Entity Recognition (NER) in the clinical
domain aims to identify clinically relevant concepts
in the provider narrative text of electronic medical
records (EMR).

• Such concepts as diseases/disorders,
treatments/medications, and tests have been the
focus of clinical NER community challenges, such as
2010 i2b2/VA NLP challenge, 2013 CLEF-eHEALTH
challenge, SemEval 2015 Task 14.

System Architecture

1.Concept boundary detection
● General text features:

● previous 3 unigrams, next 3 unigrams, current word's POS,
unigram w/digits replaced by #, other word shape features,
previous two tokens' features, following two tokens' features

● Genia features: GENIA stem, GENIA POS, GENIA chunk-tag
● UMLS features: UMLS CUI, UMLS semantic type
● Prose and non-prose contexts processed separately

2.Concept Type Identification
● Additional features: regular expressions for dates, test results,
doctor abbreviations

Results on i2b2/VA 2010 Data

● Clinical Named Entity Recognition system (CliNER) is an open-source natural language
processing system for named entity recognition in clinical text of electronic health
records. CliNER is designed to follow best practices in clinical concept extraction.

● CliNER is implemented as a two-pass machine learning system for named entity
recognition, currently using a Conditional Random Fields (CRF) classifier to establish
concept boundaries and a Support Vector Machine (SVM) classifier to establish the
type of concept.

Why another NER system?
• Despite recent advances in clinical NER state-of-the-
art, no lightweight, easy to set up, open-source
implementation is available to date.

• Shared tasks helped to identify best-performing
methods, but the workshop format does not allow or
encourage teams to develop fully functioning, user-
friendly systems.

• Systems developed during the challenges or
published subsequently are never released for
public use and frequently are put together
haphazardly from opportunistically developed code
components.
• On the other hand, the systems developed outside
of the shared task paradigm tend to be heavy
aggregations of multiple components that require
extensive set up and configuration, presenting a
significant barrier to initial use.

BRIEF HISTORY: The patient is an (XX)-year-old female with
history of <problem>previous stroke</problem> ; <problem>
hypertension </problem> ; <problem>COPD</problem> , stable
; <problem>renal carcinoma </problem> . <test> CT of the
maxillofacial area</test> showed no <problem>facial bone
fracture </problem> . <test> Echocardiogram </test> showed
normal left ventricular function . She was set up with a skilled
nursing facility , where she was to be given <treatment>daily
physical therapy</treatment> .

System Output: Trained on
i2b2/VA 2010 Data

● Extensible, easy-to-use
architecture

● Free software: Apache v2.0 license
● Available on GitHub, see the
project website: http://cliner.org

● Implemented in Python, using
sklearn, CRFsuite, and LibSVM

● Support for multiple formats,
currently supporting:
✔ word offset-based format
✔ inline XML
✔ character offset-based format

● Basic system functionality
● train.py, predict.py, evaluate.py

● Utilities: command-line interface,
installation & config tools, etc.
● helper.py, is_installed.py, cli.py,
format.py, read_config.py

● Data representation: pipeline
logic, storage for the two-pass
implementation, etc.
● note.py, model.py

● Features
features.py,

 sentence_features.py,
 word_features.py

genia: genia_features.py,
 interface_genia.py

umls: umls_features.py, umls.py
● Machine Learning: ML library
wrappers
● sci.py, crf.py

Features

Current Updates (Feb 2015)
● Support for disjoint named entity spans:

✔ 3rd Pass: merging pairs of non-contiguous spans using an SVM
classifier

✔ Added syntactic features: collapsed dependencies using
Stanford dependency parser.

● Normalizing named entities to UMLS concepts with MetaMap
output filtered on semantic type of the entity.
✔ Queries normalized with LVG and a custom spell-checker.

● Miscellanea:
✔ Support for character-offset formats.
✔ Installation and dependency diagnostics for easier setup.

