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Abstract. This empirical study of a complex group of patients with multiple 

chronic concurrent conditions (diabetes, cardiovascular and kidney diseases) 

explores the use of deep learning architectures to identify patient segments and 

contributing factors to 30-day hospital readmissions. We implemented 

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) on 

sequential Electronic Health Records data at the Danderyd Hospital in 

Stockholm, Sweden. Three distinct sub-types of patient groups were identified: 

chronic obstructive pulmonary disease, kidney transplant, and paroxysmal 

ventricular tachycardia. The CNN learned about vector representations of 

patients, but the RNN was better able to identify and quantify key contributors to 

readmission such as myocardial infarction and echocardiography. We suggest 

that vector representations of patients with deep learning should precede 

predictive modeling of complex patients. The approach also has potential 

implications for supporting care delivery, care design and clinical decision-

making. 

Keywords: 30-day hospital readmissions, Multiple Chronic Conditions, Deep 

Learning 

1 Introduction 

Machine learning (ML) algorithms, particularly deep neural networks for sequential 

Electronic Health Records (EHR) data, have been extensively applied in the past decade 

to inform clinical decision making. However, the unstructured nature of EHR poses a 

challenge in its implementation, even more so if implemented for complex patients such 

as patients with multiple chronic conditions (MCCs). One such group of patients with 



  

MCCs is patients with concurrent diagnoses of cardiovascular and chronic kidney 

diseases and diabetes, hereinafter referred to as MCC patients. This triad of diseases 

constitutes a huge burden of disease around the world [1] due to high health care 

utilization [2]. MCC patients are complex due to the underlying pathophysiological 

mechanisms, conflicting treatment guidelines for each individual disease, and lack of 

studies [3,4]. This makes it challenging for physicians to treat MCC patients optimally. 

Clinicians have been using deep neural networks such as Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN) together with patients’ 

medical histories and demographics (e.g. age and gender) to gain insights into the EHR 

data and tailor treatments according to individual patient needs. Sequential and time-

dependency features in patients’ journeys such as diagnoses and clinical procedures are 

increasingly being utilized in ML algorithm development to ensure accuracy and 

generalizability [5]. However, interpretation of the results obtained from deep neural 

networks is difficult. Practitioners tend to use simpler models as they have better 

interpretability, even though they are less accurate than modern ML algorithms [6]. 

This tradeoff between accuracy and interpretability of the model is not an optimal 

solution and researchers are developing modern ML algorithms that have both better 

accuracy and interpretability [7]. 

The aim of this study is to demonstrate how diagnosis and procedure codes 

contribute towards predicting 30-day hospital readmissions for MCC patients, and to 

explore MCC patients’ subtypes through vector representations. 

Our contribution through this study is three-fold: Firstly, based on the data obtained 

from one of the busiest tertiary hospitals in the Nordic countries, we demonstrate the 

effectiveness of deep learning architectures in the exploration of descriptive analytics 

for MCC patients. More specifically, we explore patterns in vector representations of 

patients and identify the contributors to 30-day hospital readmissions in terms of 

diagnoses and procedures. Secondly, the use of the Word2Vec model in conjunction 

with CNN places the MCC patients’ records in EHR in sequential order for the entire 

care episode. This output can be fed into any type of deep neural architecture and used 

for making exploratory analysis and predictions. Thirdly, by applying the deep neural 

network architectures of CNN and RNN on real patient data set we demonstrate how 

these algorithms developed in one setting can be generalized and implemented in 

another setting.  

2 Related work 

Hospital readmissions prediction, a key measure to assess quality of health care 

delivery, has increasingly become the focus of ML applications. Traditionally, 

demographics are used to predict hospital readmissions, but the use of other EHR 

variables is increasing with ML applications. A recent systematic review of models 

predicting hospital readmissions found that among the twenty-eight types of predictive 

risk variables, mostly comorbidity, demographics, and social variables were used  [8]. 

Of the seventy-three unique predictive models, forty-five used socio-demographic 



  

variables, and only fourteen and sixteen used diagnoses and procedures respectively. 

Among the twenty-two models related to cardiovascular diseases, only four used 

diagnoses together with the socio-demographic variables, seven used procedures with 

the socio-demographics variables, and none of them used diagnoses and procedures 

simultaneously. Two models used diagnoses and procedures simultaneously, but they 

were used to predict all-cause hospital readmissions [8]. 

Most of the existing models for hospital readmissions prediction make use of the 

conventional ML algorithms such as logistic regression, support vector machines, and 

k-nearest neighbors [8,9]. One potential limitation of the conventional approaches is 

that they don’t take time duration and temporality into account. RNNs have been 

recently implemented in health care to address issues of unequal time duration and 

temporality [5]. Convolutional and recurrent neural networks have been used to predict 

mortality [10], clinical events [11], diagnoses [12,13], and clinical intervention[14]. 

CNN, a variant of RNN among others that are well known for capturing underlying 

structures in sequential data, have been applied in many fields such as speech 

recognition [15], natural language processing [16] and text classification [17]. Deep 

neural networks have also been recently implemented to predict hospital readmissions 

[9,18]. However, only a few studies have implemented deep neural networks for 

exploratory and descriptive analysis of complex patients with MCCs [19].  

3 Methods 

3.1 Study design 

In this empirical study, we implemented two different types of RNNs to learn about 

vector representations of patients and factors contributing to 30-day hospital 

readmissions for MCC patients.  

Experiment 1 

In experiment 1, we implemented a CNN model complemented with the Word2Vec 

feature embedding in an unsupervised way, i.e. MCC patients readmitted within 30 

days were not labelled and the algorithm learned the inherent structure from the EHR 

data. The study follows the approach developed by Zhao et al. [20].  

We implemented the Word2Vec model that takes the patients’ diagnoses (ICD 

codes) and procedure codes as input (in the form of a text corpus) and produced words 

in the form of output vectors. The Word2Vec model placed the ICD codes and 

procedures in their respective clusters. For MCC patients, the ICD codes and 

procedures were observed in a temporal order and they were organized into sequences. 

The Word2Vec model was trained on these sequences, and arrays of sequences were 

produced that were later fed into the CNN model in the form of a stacked matrix. The 

same hyper-parameters from Zhao et al [20] were used. 



  

The CNN model was trained on the learned sequences for MCC patients in the 

Word2Vec model. Inputs for MCC patients (p) were developed as an embedding matrix 

(Xp ∈ Rnp*d), where np is the number of records for MCC patients and d is the 

embedding dimension for MCC patients’ diagnosis and procedure codes. A 1D 

convolution was applied over sequential dimension of the matrix. K filters were used 

in varying lengths of 2 to 5 to capture sequential variations. The filters looked for the 

presence of a specific pattern in the MCC patients’ data. Max pooling layers were used 

that transformed user outputs from each filter to real numbers [20].   

After the model was trained on MCC patients, a predominant single representation 

of MCC patients’ sequential encounters was obtained which was further used to cluster 

MCC patients’ vector representations. Various clustering algorithms were explored to 

group MCC patients’ vector representations after learning the powerful sequential 

representation from the CNN model. Both feature based clustering (K-Means) and t-

Distributed Stochastic Neighbor Embedding (tSNE) were used to cluster the MCC 

patients’ vector representations. 

Experiment 2 

In experiment 2, we implemented the REverse Time AttentIoN (RETAIN) model, a 

variant of RNN, to identify the contributors of 30-day hospital readmissions for MCC 

patients. The study follows the approach developed by Choi et al. [11].  

Using the RETAIN model we identified the predictors among diagnosis and 

procedure codes by assigning a significant portion of prediction to the attention weight 

generation process. EHR data is stored in such a way that every visit is recorded for 

each patient at a particular time and all the events that occur are recorded as multiple 

variables for each visit. The RETAIN model uses weights both for visits and for all the 

events occurring at a single visit, i.e. visit-level and variable-level weights. The visit 

level attention weights tackle the effect of each patient’s visit embedding and variable 

level attention weights tackle each activity/event at a visit. For this purpose, RETAIN 

uses a model with two RNNs, i.e. RNNα and RNNβ, in a backwards direction to 

generate attention vectors. We used different hyper-parameters compared to Choi et al. 

[11], as shown in Table 1. 

Table 1. Comparison of hyper-parameters used in RETAIN and Experiment 2 

Hyper-parameter REATIN Experiment 2 

Size of visit embeddings, hidden layer for 

RNNα and RNNβ 

128 4 

Regularization for final classifier weight, input 

embedding weight, α generating weights, and β 

generating weights 

0.0001 0.00001 

Number of epochs  10 500 

Training, validation and test split ratio 0.75:0.1:0.15 0.6:0.2:0.2 



  

3.2 Data collection 

The study was conducted at an Integrated Multidisciplinary Clinic (HND-centrum) at 

a tertiary academic medical hospital, Danderyd University Hospital (DSAB), in 

Stockholm, Sweden. DSAB is one of the largest Emergency Hospitals (approximately 

500 beds) in northern part of Stockholm, Sweden, and provides health services for 

approximately 650,000 people.  

EHR data were obtained for all patients (n = 610) who were registered at the HND-

centrum at DSAB between November 2010 and January 2017, and included personal 

identification numbers, visit dates, visit types, ICD diagnoses codes, clinical procedures 

codes, mortality dates, DRG codes, hospital admission dates and hospital discharge 

dates. The majority of MCC patients were between 70 and 80 years old. In total, 3,200 

hospital admissions were observed in the selected period, the majority (87.5 %) of 

which were acute hospital admissions (n=2,801). A total of 76 diagnoses and 59 

procedures were fed into the model to develop the sequence vector. 

4 Results 

4.1 Experiment 1: CNN for vector representations of MCC patients with 30-day 

hospital readmissions 

A total of 268 MCC patients with 30-day hospital readmissions were selected. The 

most significant ICD codes and procedures that contributed to the 30-day hospital 

readmissions were identified as shown in Table 2.  

Table 2. Salient contributors (diagnoses and procedures) of 30-day hospital readmissions for 

MCC patients 

No ICD code (diagnoses) Procedures 

1 I109 (Essential Hypertension) Patient Conference 

2 E118 (Diabetes Mellitus type2) Control and reprogramming of 

pacemaker 

3 N183 (Chronic Kidney Disease stage 3) Information and teaching directed at 

patients 

4 I259 (Chronic Ischemic Heart Disease) Transthoracic Doppler echocardiography 

5 I509 (Heart Failure) Telemetry monitoring 

6 N184 (Chronic Kidney Disease stage 4) Unplanned admission for end of life care 

7 E119 (Diabetes mellitus without 

complications) 

Information and teaching directed at 

patients 

8 E117 (Non-insulin-dependent Diabetes 

Mellitus) 

Coronary angiography 

9 Z921 (Long term use of anticoagulants) Use of interpreter 

10 E785 (Hyperlipidemia, unspecified) Distant consultation 

 



  

Table 2 shows that MCC patients readmitted to hospital within 30 days mostly had 

essential hypertension, diabetes mellitus type 2, and chronic kidney diseases stage 3 

and 4 as the key contributors. Similarly, the most significant procedures that MCC 

patients experienced were patient conferences, echocardiography, coronary 

angiography, telemetry monitoring, and distant consultations. Since MCC patients are 

a niche group selected through very strict inclusion and exclusion criteria, it is not 

surprising that the model identified the contributors shown in Table 2, because these 

are the most frequent ICD codes and procedures among the selected MCC patients. 

However, the order of the contributions is noteworthy as they are ordered from most 

relevant to the least relevant.    

Based on MCC patients’ vector representations learned by the model, further 

exploration of the readmitted MCC patients was conducted. Distinct sub-groups were 

identified by t-SNE clustering as shown in Figure 1. Patients in cluster 1 appear to 

diverge most from the others.  

 

 

Fig. 1. t-SNE visualization of MCC patients’ clusters. Each cluster represents sub-groups within 

MCC patients who were readmitted within 30 days of their previous hospital admission. 

 

In order to study what differentiates the three clusters from each other, we identified 

events most common to each cluster. Table 3 presents the key features for each cluster 

in terms of diagnoses and procedures that the MCC patients experienced (direct output 

from the model). 

As shown in Table 3, Cluster 1 is distinct from Cluster 2 and 3. It was found that 

MCC patients in cluster 1 had Chronic Obstructive Pulmonary Disease (COPD), 



  

labelled with the ICD code R060 (Dyspnea), and required bronchodilation and 

spirometry more frequently. This indicates that MCC patients with concomitant COPD 

are more likely to be readmitted within 30 days.  

MCC Patients in Cluster 2 have had a kidney transplant (ICD code Z940) and went 

through several team visits and team conferences, illustrating the complex nature of 

their conditions.  

Lastly, patients in Clusters 3 had paroxysmal ventricular tachycardia (ICD code 

I472) and repeatedly required control and reprogramming of their pacemaker or 

defibrillator, and hence were more likely to be readmitted within 30 days. 

As we can see from the results in experiment 1, the model identified the most relevant 

contributing factors to 30-day hospital readmission among MCC patients, and the 

salient features of the clusters. However, the interpretation of the results can be very 

tricky because the contributing factors were not quantified or labelled as positive or 

negative. Thus, we aimed for a more explanatory model in experiment 2. 

Table 3. Salient features of clusters of MCC patients with 30-day hospital readmissions 

 

Cluster 1 Cluster 2 Cluster 3 

E117,  

N185, 

I350, 

I259, 

I109,  

E119, 

Cystoscopy, 

Information and 

teaching directed at 

patients,  

sampling (non-specific), 

R060,  

Arterial puncture, 

N409, 

Arterial puncture, 

Spirometry before and 

after bronchodilation, 

Exercise ECG standard, 

Spirometry before and 

after bronchodilation 

N183, 

E107, 

Distant consultation, 

Z940, 

L979, 

N184, 

E117, 

I350, 

Patient Conference, 

Team visit, 

Z940, 

Patient Conference, 

E107, 

L979, 

Team visit, 

Z921, 

E117, 

L979, 

Patient Conference 

N183, 

E117, 

N184, 

Control and reprogramming of 

the pacemaker or defibrillator 

(AICD), 

E119, 

I109, 

N185, 

I509, 

Patient Conference, 

Information and teaching 

directed at patients, 

N183, 

I472, 

Control and reprogramming of 

the pacemaker or defibrillator 

(AICD, 

Control and reprogramming of 

the pacemaker or defibrillator 

(AICD) 

   

E117 = type 2 diabetes mellitus with multiple complications, N185 = chronic kidney disease 

stage 5, I350 = non-rheumatic aortic valve stenosis, I259 = nonspecific chronic ischemic heart 

disease, I109 = type 1 diabetes mellitus without complications, R060 = dyspnea, N409 = benign 

prostatic hyperplasia, N183 = chronic kidney disease stage 3, E107 = type 1 diabetes mellitus 

with multiple complications, Z940 = kidney transplant, L979 = non-pressure chronic ulcer of 

unspecified part of lower leg, N184 = chronic kidney disease stage 4, Z921 = long term use of 

blood thinning agents, E119 = type 2 diabetes mellitus without complications, I509 = unspecified 

heart failure, I472 = ventricular tachycardia 



  

4.2 Experiment 2: RETAIN for MCC patients with 30-day hospital readmissions 
Given the temporal sequences of MCC patients’ diagnoses and procedures, we 

attempted to identify factors that contributed to 30-day hospital readmission. The same 

number of patients with 30-day hospital readmissions (n=268) were included. We were 

able to attain Validation and Test accuracy of 0.900 and 0.794 respectively with 

RETAIN, which was better than the AUC of 0.8705 obtained by Choi et al [11]. 

 

Table 4 shows results obtained from the RETAIN model in terms of contributions 

of the diagnoses and procedures to 30-day hospital readmissions and overall risk of 

readmission for MCC patients (direct output from the model). The contribution scores 

range between the lowest and highest values of -0.5 and 1.5 respectively. The overall 

risk score is calculated between 0 (no risk) and 1 (absolute risk). Table 4 shows 

readmission risk scores for three MCC patients and the contribution scores, either 

positive or negative, of each ICD code and procedure. The contribution scores show 

how each diagnosis and procedure contributed to the final prediction score (the 

contribution scores are added and put through the sigmoid function in the model).  

Table 4. Contributions of the diagnosis and procedure codes in predicting 30-day hospital 

readmissions for MCC patients at each successive patient visit. 

Visit  

No 
MCC patient 1 MCC patient 2 MCC patient 3 

1 I489B: 0.353787   

 

E107:  -0.055551   E119:      0.651345 

2 Z950:  1.018832   

 

Allogenic red cell 

transfusion: 0.104865   

 

Patient Conference: 

0.846334   
3 I472: 0.638967   

 

G473:  2.641692   

 

Information and teaching 

directed at patients: 

1.341413 

4 Control and reprogramming 

of the pacemaker or 

defibrillator: -0.009479   

Z921:  1.971326   

 

Z921: 0.978889   

 

5 Preoperative assessment: 

0.073104   

 

I489B: 0.557335   

 

Patient Conference: 

0.196036   

 6 E785: 1.050597 I219:   0.019547   

 

Distant consultation: 

0.082917   

 7 I489B: 0.294173 I501:   0.006919   

 

E119: 0.604113   

 8 G473:     -0.223236 Telemetry monitoring: 

0.004798   

 

E669: 0.070579   

  

9 Telemetry monitoring :       

-0.030263 

Transthoracic Doppler 

echocardiography:         

-0.087382   

 

N183: 0.365141   

 

10 - Coronary angiography:  

- 0.042835   

 

Orthostatic test:                

-0.021256   

 11 - - Distant consultation: 

0.014503   

 12 - - I109:                -0.029082   

  Overall Risk score: 

0.952125 

Overall Risk score: 

0.992927 

Overall Risk score: 

0.992786 

I489B = unspecified atrial fibrillation and atrial flutter, Z950 = presence of cardiac pacemaker, 

I472 = ventricular tachycardia, E785 = unspecified hyperlipidemia, G473 = sleep apnea, E107 = 



  

type 1 diabetes mellitus with multiple complications, Z921 = long term use of blood thinning 

agents, I219 = unspecified acute myocardial infarction, I501 = left ventricular failure, E119 = 

type 2 diabetes without complications, E669 = unspecified obesity, N183 = chronic kidney 

disease stage 3, I109 = essential hypertension 

As we can see in Table 4, RETAIN determined the 30-day hospital readmission risk 

score for each individual MCC patient based on the diagnoses and procedures in their 

respective past medical encounters. In contrast to the results obtained from experiment 

1, RETAIN assigned each diagnosis and procedure its specific contribution score and 

determined the overall risk of 30-day hospital readmission. Each contribution can either 

negatively or positively affect the overall risk of readmission.  

MCC patient 1 in Table 4, likely belonging to Cluster 3 in experiment 1 because the 

patient had paroxysmal ventricular tachycardia (ICD I472), required reprogramming 

and controlling of the pacemaker or defibrillator, and preoperative assessment among 

other procedures. We can see that paroxysmal ventricular tachycardia diagnosis 

increased the risk of readmission (0.638967) while the procedure for control and 

programming of the pacemaker reduced the risk of readmission (- 0.009479). Other 

notable contributions for MCC patient 1 were preoperative assessment and telemetry 

monitoring which increased (0.073104) and decreased (- 0.030263) the risk for 30-day 

hospital readmission respectively.   

MCC patient 2 had coagulation disorder (ICD code Z921) and acute myocardial 

infarction (ICD I219) in the past, and also required a blood transfusion among other 

things. We can see in Table 4 that a myocardial infarction and blood transfusion 

contributed positively to the readmission score (0.019547 and 0.104865 respectively), 

whereas echocardiography and coronary angiography reduced the risk of readmission 

(- 0.087382 and - 0.042835 respectively). Similarly, we can see the contributing factors 

and scores for MCC patient 3. For example, other than the three common diagnoses 

underlying the MCC condition, the patient had obesity (ICD code E669), which 

positively contributed to 30-day hospital readmission (0.070579).   

5 Discussion 

Both the CNN and RNN used in this study identified the most salient predictors for 30-

day hospital readmissions among MCC patients. Experiment 1 demonstrated that 

various distinct sub-types exist among MCC patients readmitted within 30 days, and 

MCC patients with COPD, kidney transplant and paroxysmal ventricular tachycardia 

are at higher risk of readmission within 30 days. Experiment 2 demonstrated that the 

model was able to identify contribution scores for diagnoses and procedures such as 

myocardial infarction and echocardiography, and overall 30-day hospital readmission 

risks for individual MCC patients.  

 

Experiment 1 also demonstrated that patient conferences preceded 30-day hospital 

readmissions among MCC patients. Control and reprogramming of pacemakers, 

telemetry monitoring and distant consultations were also associated with the 30-day 



  

hospital readmissions. But, experiment 1 was not able to demonstrate the quantitative 

contribution, either positive or negative, of the diagnoses and procedures to 30-day 

hospital readmissions. However, this challenge associated with interpretation of results 

obtained from deep neural networks is common, and some models have been applied 

in health care to address this issue [11,21]. 

 

In experiment 2, we demonstrated that RETAIN was better able to quantify the 

individual contributions of diagnoses and procedures to 30-day hospital readmissions, 

both in terms of either causing (positive contribution) or preventing (negative 

contribution) readmissions. These contributions were determined for individual 

patients considering the sequence and timing of the previous MCC patients’ visits as 

shown in Table 4. In coming studies we aim to explore how the RETAIN model is 

affected by adding more variables to the MCC patients’ sequential records, such as 

demographics, medications, laboratory values, number of visits, and length of stay.  

 

This study suggests that vector representations of patients and sub-typing among 

complex patients, such as MCC patients, by the type of health care encounters, like 

hospital readmissions, is as important as sub-typing patients by age and gender. Vector 

representations of patients are a road map in disease progression [22–24] that can 

identify key disease patterns among complex chronic patients. Sub-grouping patients, 

and hence identifying specific medical journeys for complex patients may enhance 

clinicians’ ability to make optimal care decisions. As demonstrated in this study, robust 

deep learning algorithms such as CNN and RNN have been proposed to learn typical 

vector representations of complex patients, and stratify them into suitable sub-groups 

that can help clinicians in their day-to-day decision making process during disease and 

operational management. 

 

The CNN and RNN used in this study have the potential to positively influence 

practical decisions around MCC patients and optimize resource utilization. The models 

can be used to inform physicians about high consumers of care, and develop process 

maps and clinical pathways for unique clusters. They also have predictive potential and 

can be used to identify MCC patients’ sub-types for which prediction models can be 

developed. These models can predict both clinical and healthcare operations 

management outcomes such as mortality, cardiovascular events, length-of-stay, and 

hospital readmissions. For instance, if physicians are able to classify patients into a 

particular cluster that follows a specific sequence of treatment events, they would be 

able to stream patients into a sequential care process, or if not, into a more customized 

process [25]. Predictive models can also be incorporated into interactive analytics tools 

for patients with MCCs where physicians could review individual MCC patient’s risk 

scores for selected outcomes. The tool could also provide a visualized overview of a 

patient's past medical history and encounters. 

 



  

6 Limitations/Methodological considerations 

This study reports the findings based on ICD codes and procedures only for a relatively 

small sample size of MCC patients. Therefore, prediction score accuracy might be low. 

We aim to increase the sample size and refine the models’ parameters in order to 

increase accuracy, and include more variables for the development of a predictive 

decision support model for MCC patients.  Some ICD codes and procedures are also 

inherently associated with certain already-made clinical decisions. In the future, we will 

carefully select diagnosis and procedure codes relevant for specified research questions, 

for instance using directed acyclic graphs. 

7 Conclusion 

Temporal data on ICD codes and procedures appears to be valuable for personalized 

disease management strategies for MCC patients. In this study, three distinct sub-types 

of MCC patients with increased risk for readmission were identified. We suggest that 

temporal vector representations of patients and sub-typing with deep neural networks 

such as CNN and RNN are useful in the development of predictive analytics tools for 

patients with MCCs. 

In the future, we plan to explore the application of deep neural networks in the 

development of prediction models for MCC patients that can be used to predict both 

clinical and operations management outcomes, and aim to make the results easily 

accessible for clinicians and other health care professionals.  
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