Graph Convolutional Networks to explore Drug and
Disease Relationships in Biological Networks

Payal Bajaj* Suraj Heereguppe', Chiraag Sumanth”
pabajaj, hrsuraj, csumanth {@stanford.edu}

1 Abstract

Discovering drug-disease relationships is crucial for medical diagnosis and can provide critical insights for
medical treatment. Traditionally, this analysis has been based on protein-protein interaction (PPI) graphs
where a few known disease-associated proteins are used to identify other proteins by exploring network
properties. The aim of this project is to explore recent graph convolutional networks on drug-disease
interaction in biological networks. These networks represent nodes using node embeddings (vectors of
floating point numbers) which are generated by incorporating features derived from their neighborhoods
in the graphs. These embeddings can be learned in an unsupervised manner (to recover the graph
structure) or supervised manner (combined with a downstream task). This project could potentially
be applied to predicting and uncovering previously undiscovered or incompletely identified disease-drug
interactions, with the help of these learned features, bootstrapping off a relatively smaller number of
labeled nodes at the start of training (inductive learning). We plan to experiment with both methods
for our problem of predicting proteins associated with a particular disease.

2 Introduction

Discovering drug-disease relationships is crucial for medical diagnosis and can provide critical insights
for medical treatment. Traditionally, this analysis has been based on protein-protein interaction (PPI)
graphs where a few known disease-associated proteins are used to identify other proteins by exploring
network properties. In this project, we plan to experiment more recent approaches to characterize pro-
teins for predicting proteins associated with a disease. we aim to focus primarily on graph convolutional
approaches such as GCNs [2| and GraphSAGE][1] where structural properties of a node can directly
be incorporated into the embeddings generated by the neural network. These approaches have demon-
strated better results in multiple tasks such as node label classification and link prediction compared to
node2vec[3]. The embeddings of these proteins can then be used as features in the prediction task.

We will follow the paradigm of machine learning by testing the hyper-parameters for each of these tech-
niques and compare the relative effectiveness of these approaches versus each other and the results the
authors present in [5]. We will evaluate the model using the number of disease-related proteins identi-
fied by the algorithm, more specifically evaluate on the precision-recall metrics produced by the various
classifiers we build. Our baseline would start off using a logistic regression approach in trying to classify
nodes of proteins in our Protein-Protein Interaction Networks, characterized by the features produced
by node2vec to a respective disease group. We then follow this up by exploring and evaluating the the
performance of both GCN and GraphSAGE on the same task.

We would like to explore if it is possible to manually incorporate additional information while learning
node embeddings similar to [8]. For instance, we want to try to incorporate information into the process of
learning node embeddings based on other literature such as node2vec|3] and identify if adding non-linear
variants of such features improve performance as compared to using them directly for the prediction task.

* Authors worked together on the entirety of this project and have each contributed equally. Therefore, each author
maybe graded on the basis of equal contribution to this project, on all aspects from conceptualization, implementation,
experimentation and report generation

3 Problem Statement

Given a protein-protein interaction graph G = (V| E)) where V represents the proteins and E represents
protein-protein interactions. We formulate the problem of discovery of protein-disease relationships as a
node classification where the label corresponds to the disease that the protein(node) is associated with.
Nodes are featurized with the help of node embeddings, as described earlier, which is the method used
to encode predictive information.

4 Related Work

4.1 Discussion

Most diseases cannot be explained by defects in a single gene. Rather, they involve the coordinated
function of distinct gene groups. Guney et al. [7] argue that drug development must shift focus from
individual genes to a network-based perspective of disease mechanisms. The need for this change in
analysis paradigm is born out of the fact that traditional drugs offer palliative cure rather than target
the genetic cause of the disease. Current approaches are based on target profile similarity, defined as
either the number of common targets between two drugs or as the shortest path between the drug targets.

While these studies are biased towards already studied proteins, the method outlined in this paper is
argued to be unbiased and unsupervised, based on recent evidence that the genes associated with a par-
ticular disease tend to cluster in the same neighborhood called the disease module. This is a subnetwork
within the interactome rich in disease proteins. The main hypothesis made by the authors is that an
effective drug must target proteins within the corresponding disease module, or in the immediate vicinity.
Protein-protein interaction, drug-disease association, and drug-target association data were integrated to
test this hypothesis. A new drug-disease proximity measure is proposed, that quantifies the therapeutic
effect of drugs. This helps distinguish palliative and effective treatments, while also offering an unsuper-
vised approach to discover novel uses for existing drugs.

Menche et al. [6] explore network properties and claim that disease-associated proteins interacting with
each other suggests that they tend to cluster in the same neighborhood of the interactome, forming a
disease module, a connected subgraph that contains all molecular determinants of a disease. The ac-
curate identification of the corresponding disease module represents the first step toward a systematic
understanding of the molecular mechanisms underlying a complex disease. In this paper, the authors
present a network-based framework to identify the location of disease modules within the interactome
and use the overlap between the modules to predict disease-disease relationships.

Using network science, the authors showed show that we can only uncover disease modules for diseases
whose number of associated genes exceeds a critical threshold determined by the network incompleteness.
They found that the higher the degree of agglomeration of the disease proteins within the interactome,
the higher the biological and functional similarity of the corresponding genes. If two disease modules
overlap, local perturbations causing one disease can disrupt pathways of the other disease modules as
well, resulting in shared clinical and pathobiological characteristics. These findings indicate that many
local neighborhoods of the interactome represent the observable part of the true, larger and denser disease
modules, and open doors for further exploration in drug target identification.

Agrawal et al [5] focus on identifying disease pathways in PPI network. They define disease pathways
as sets of proteins associated with a given disease. They demonstrate that such pathways often form
separate disconnected components in the graph using multiple distance metrics such as size of largest
pathway component, density of pathway and distance of pathway components. Then they prove that
standard techniques fail in such PPI networks as they mainly focus on proximity based measures to
discover proteins related to a particular disease. They implement various proximity based approaches
and prove empirical correlation between performance and distance metrics listed above. Thus in PPI
networks where the disease pathways are disconnected, such standard proximity based techniques will
not work. The novelty of their work is exploiting higher-order network structures such as motifs for
discovering disease pathways by explicitly characterizing features from these motifs: they count the
number of times a protein from a disease pathway participates at specific positions in these motifs. They
concatenate these features with neural embeddings followed by a logistic regression classifier to predict

disease related proteins (or pathways) from the PPI network.

4.2 Critique

The authors in [5] experimented with a lot of techniques to discover disease pathways and focused on
the importance of structural properties instead of standard proximity based metrics like density, largest
component, etc. and demonstrated preliminary results for the same. However, they do not specify the
details of the single layer neural network [3] and random walks they are using, making it difficult to un-
derstand why neural embeddings perform worse than when combined with higher order network structure
especially when [3] offers a way to capture structural properties as well. Further, they do not explore
the recent advances in the field of neural embeddings, absent from the work presented in [2] and [1] as
well. More specifically, the graph convolutional approaches that are constructed to incorporate structural
roles of nodes into their embeddings. It would be really interesting to compare the performance of their
approach versus automatically learning higher order network structure properties of nodes using these
recent approaches.

The work cited in [6] has a drawback wherein the authors rely on using external datasets to extract fea-
tures (such as comorbidities) beyond what is available in the interactome network to establish one of their
primary objectives. This makes the approach very specific, and may not generalize well when applied
to characterizing other types of biological networks with different characteristic/feature requirements.
Another issue the authors faced was with the incompleteness of the interactome they were dealing with
itself. To be specific, they offered quantitative evidence for the identifiability of some disease modules,
while showing that for other diseases the identifiability condition is not yet satisfied at the current level of
incompleteness of the interactome. Thus, there are several instances of diseases that the authors could not
uncover any valuable information from, despite their novel approach to tackle the incomplete interactome.

The major theme we see here is that most methods currently include less than 20% of all potential
pairwise protein interactions in the human cell, which means that we seek to discover drug and disease
associations relying on interactome maps that are 80% incomplete. Additionally, the gene lists of diseases
and drugs remain incomplete. Because of the incompleteness of the interactome and the limited knowledge
of disease- and drug-associated genes, it is not clear if the available data have sufficient coverage to map
out modules associated with each disease and each drug. It provides a clear premise for us to explore
recent advancements in the field of inductive learning approaches to networks in trying to featurize all
nodes in an interaction network, which are found in these large incomplete regions and hence bridge this
gap in an attempt to propose new protein-drug / disease-drug interactions.

5 Datasets

Protein-Protein Interactions Network: Protein—protein interactions (PPIs) are the physical con-
tacts of high specificity established between two or more protein molecules as a result of biochemical
events steered by electrostatic forces including the hydrophobic effect. Many are physical contacts with
molecular associations between chains that occur in a cell or in a living organism in a specific biomolecular
context. We use BioGRID for our analysis as a Protein-Protein interaction network. It is an interac-
tion repository with data compiled through comprehensive curation efforts. The current version has
about 1,499,723 protein and genetic interactions, 27,785 chemical associations and 38,559 post transla-
tional modifications from major model organism species. For the purpose of this project, we use the
latest(2017) release of the database which has 67371 distinct protein identifiers.

Disease-Protein Interactions Network: Proteins do not function in isolation; it is their interac-
tions with one another and also with other molecules (e.g. DNA, RNA) that mediate metabolic and
signaling pathways, cellular processes, and organismal systems. Due to their central role in biological
function, protein interactions also control the mechanisms leading to healthy and diseased states in organ-
isms. Diseases are often caused by mutations affecting the binding interface or leading to biochemically
dysfunctional allosteric changes in proteins. Therefore, protein interaction networks can elucidate the
molecular basis of disease, which in turn can inform methods for prevention, diagnosis, and treatment.
Disease-protein interactions are extracted from DisGeNET[9] which is a platform that centralized the
knowledge on Mendelian and complex diseases. These diseases are mapped to UMLS (Unified Medical
Language System) codes. Out of 2297 diseases (with protein associations from DisGeNET), about 545

Degree distribution

% - H UMLS Code ‘ Class ‘ # Training ‘ # Test H
5 o DOID:0014667 | 0 609 173
g DOID:14566 1 1794 478
g - DOID:7 2 2898 729
DOID:630 3 166 46
o i DOID:0080015 | 4 385 104
!) | ! DOID:0050117 | 5 166 43
DOID:225 6 135 44
Node degree DOID:150 7 1264 335

Figure 1: Degree Distribution in PPI network Figure 2: Class Label Distribution

diseases are associated with a UMLS code. Following the authors’ work in [5], we work with diseases that
have at least 10 associated proteins. We get about 534 diseases after this filtering. These are mapped
to 8 distinct UMLS codes, each representing a high-level disease group, which form the 8 classes in our
classification task. We then mapped each of our proteins in the PPI network to their associated disease
codes, crosswalked using the UMLS mappings.

Exploratory Data Analysis: The average clustering coefficient of this graph is 0.161678 and the
strongest connected component contains 62036 proteins (90% of the total nodes). The degree distribu-
tion of this network is shown in the figure 1. The distribution appears to be a power law distribution
where a few proteins have very high degree that appear in the tail of the power law.

We formulate disease-protein discovery as a node classification problem. Out of 67371 proteins in the
PPI network, 5489 proteins are associated with at least one disease and thus have labels. Therefore,
we split these proteins into 4391 nodes for training and 500 for validation and 598 for test. As proteins
can be associated with multiple diseases, we can have more than one correct label for each protein. The
distribution of proteins per label is presented in fig 2.

6 Approach

We use a combination of multiple techniques in our approach. In this section, we talk about such tech-
niques and we explain how we use them in the experiments.

Node2vec: Node2vec is a framework that learns embeddings for nodes in a graph which are low-
dimensional representations for nodes. The objective of the training node2vec on a graph optimizes
neighborhood preserving objective. The objective is designed in a way such that it allows for various
definitions of network neighborhoods by simulating biased random walks. Specifically, it provides a way
of balancing the exploration-exploitation trade-off that in turn leads to representations that can be ex-
pressive enough to capture the diversity of connectivity patterns observed in networks, that is, they can
be biased towards graph connectivity and structural equivalence based on the parameters provided to
the algorithm.

Formally, given a source node u, we simulate a random walk of fixed length 1. Let ¢; denote the i*" node
in the walk, starting with ¢y = u. Nodes ¢; are generated by the following distribution:

P(ci - x|Ci_1 = 'U) f— { A Zf (’U,:I,') S

0 otherwise

(1)

where 7, is the unnormalized transition probability between nodes v and x, and Z is the normalizing
constant.

Tox = apq(tyx)wvx (2)

where

> ifdiy =0
opg(t,x) =<1 if dip =1 (3)
% if dig =2

ay,q Provides a way to bias the random walk algorithm in a way to sample the next node based on static
edge weights w,,. There are several advantages of using this type of biased random walk. Not only is
it computationally efficient in term of space and time complexity, biasing according to the edge weights
actually helps encode the structural characteristics of the graph into the node embedding, which lends
itself well to prediction tasks involving pairs of nodes instead of individual nodes, i.e., learn edge features
as well, which proves very useful in our specific interactome context.

We used Node2Vec as our method of choice for unsupervised featurization of the nodes in our Protein-
Protein interactome network. These node embeddings were then used in various downstream classification
tasks, starting with our baseline logistic regression, as well as GCN and GraphSAGE implementations.

Logistic Regression Baseline: Logistic regression was directly applied on the obtained node-embedding
vectors using Node2Vec, to perform classification based on the featurized representation of such networks.
Our multinomial logistic regression model maps a 200 dimensional input feature vector into a prediction
of 1 of 8 potential disease-group classes it could be associated with. This method was established as a a
baslien to copare further downstream techniques such as GCN and GraphSAGE.

It is however, interesting to note that we did not ignore the very skewed distribution of training data
across classes, and hence decided to use a weighted loss function for our logistic regression encouraging
the network to not just learn from more commonly occurring classes, but also relatively incentivized the
network to learn from under-represented classes as well.

Hidden layer Hidden layer

Output

2. Aggregate feature information 3. Predict graph context and labe
from neighbors using aggregated information

(c) GraphSAGE

Figure 3: Framework

Graph Convolutional Networks: GCNs [2] provide a semi-supervised learning framework based on
node embeddings which is an efficient variant of convolutional neural networks to operate directly on
graphs. This is ideal in our setting where only a few proteins have disease associated with them. For

a given graph, GCN trains embeddings for each node using its neighborhood to predict its class label.
Learning node representations from local neighborhood for each node makes the model scale linearly in
the number of graph edges. Embeddings are updated using the following equation:

H(l+1) — U(D71/2AD71/2H(I)W(I)) (4)

where H®) represents the embeddings when labels at [hops are taken into consideration, W is the
weight matrix for I** hop, A is the adjacency matrix after adding self-loops and D is the degree matrix
creating using the updated adjacency matrix (with self-loops).

We use the GCN code provided by the authors [10]. We started with Node2Vec embeddings and perform
convolutions using the GCN architecture to produce classifications on protein node-disease association.
Additionally, similar to Logistic Regression, we changed the original loss function with a weighted loss
function to encourage better learning of the GCN neural network from under-represented classes as well,
reducing the polarizing effect in training seen from highly over-represented classes.

GraphSAGE: Much like Graph Convolutional Networks, GraphSAGE is an efficient inductive learn-
ing algorithm that generates node embeddings through a semi-supervised learning approach. Instead of
training individual embeddings for each node, GraphSAGE learns a function that generates embeddings
by sampling and aggregating features from a node’s local neighborhood.

The novel embedding generation technique used in this algorithm follows that in each iteration, or search
depth, nodes aggregate information from their local neighbors, and as this process iterates, nodes in-
crementally gain more and more information from further reaches of the graph. After aggregating the
neighboring feature vectors, GraphSAGE then concatenates the node’s current representation, with the
aggregated neighborhood vector, and this concatenated vector is fed through a fully connected layer with
nonlinear activation function o, which transforms the representations to be used at the next step of the
algorithm.

Another interesting proposal in this work shows that the authors uniformly sample a fixed-size set of
neighbors, instead of using full neighborhood sets in the algorithm, in order to improve the overall
computational efficiency, and keep the computational footprint of each batch fixed.

7 Experiments and Results

Baseline: To recreate the results from the disease pathways literature [5], we have trained node embed-
dings in an unsupervised manner using node2vec [3, 4]. We simulated 50 walks, each of length 80 with
parameters p and g to be 1. We repeated the experiments with different values of these parameters but
didn’t observe much difference. Here we report the values for the experiment where p and q are set to be 1.

The embeddings generated using node2vec are visualized in fig 4. We also visualize random embeddings
of the same nodes in 4a in order to demonstrate the results of node2vec. We can see that node2vec tries
to group nodes in the same disease together as we can see small clusters of nodes corresponding to disease
group 7 and how nodes are comparatively more spread out in 4b. However, we can see that most of the
nodes corresponding to the same disease group are still pretty spread out an not necessarily form clean
clusters for separate disease groups.

We then used multinomial logistic regression to predict the disease group of the proteins. The embed-
dings generated using node2vec form the node features for this algorithm. The results are summarized
in table 1. Vanilla LR refers to the case where the loss weighs all data points equally and balanced LR
refers to the case where loss weights data points differently based on the probability of the class they
belong to.

As an extension to the baseline we experimented with a two-hidden layer deep neural network, trained
on node2vec embeddings. We did notice a significant improvement in recall over our baseline logistic
regression, but also a drop in precision across the outcome classes as the neural network tends to over-fit
the training data, and even with regularization and other experimentation with the choice of non-linear

functions at the output layer, did not generalize well to unseen test data. Therefore, we decided to con-
tinue our efforts by using recent graph-convolution approaches GCN and GraphSAGE, outlined below.

GCN:Using GCN with pre-trained node-embeddings implies we are treating the node-embeddings as
node features. We performed multiple experiments with different hyper-parameter values. The results of
this search are summarized in fig 5. Overall, we found the training process to be pretty unstable as we
can see from the jittery behavior of the loss function. We found that learning rate of 0.001 and dropout
of 0.1 exhibited stable behavior than others as we can see that blue line is still comparatively consistent.

(a) Random (b) Node2vec

Figure 4: Node Embeddings

Disease group 0
Disease group 1
Disease group 2
Disease group 3
Disease group 4
Disease group 5
Disease group 6
Disease group 7

” Class | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |Average ”

Vanilla LR - Node2vec Features

Recall 0.0000 | 0.1695 0.82035 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0239 | 0.1267

Precision | 0.0000 | 0.4500 | 0.67342342 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.2963 | 0.1775

Balanced LR - Node2vec Features

Recall 0.1445 | 0.1548 0.2675 0.1304 | 0.1539 | 0.2093 | 0.0455 | 0.1373 | 0.2711

Precision | 0.2841 | 0.5175 0.6964 0.0500 | 0.1567 | 0.0769 | 0.0161 | 0.3710 | 0.1554

Table 1: Baseline: Logistic Regression

a8 : ;
— 1e3,01 — 1e3,01
— — 1e-3,05
— aal — 3e-3,0.1|]
— ~ 3e3,05
— — 5e-3,0.1
n
9 §a2
3 5
c =
£ ;:
[= 404
>
38
L L L L 36 T - L L
10 20 30 40 50 60 0 10 20 30 40 50 60
Epoch Epoch
(a) Training Loss (b) Validation Loss

Figure 5: Graph Convolutional Networks

Table 2 presents the best recall values that could be achieved by GCN. We present the results for hyper-
parameters which provide the best recall values. We present results for the case where loss is biased by the
number of examples, that is unweighted loss, which we call Vanilla GCN and the case where we modify
the loss function so that the weight of loss of sample is inversely proportional to number of examples in
the class that sample belongs to. The latter case essentially forces the network to learn different class
instead of predicting the most probable class (which is a problem we faced during milestone). We can see
that per class recall values are more balanced/distributed in the latter case compared to Vanilla GCN
where recall for class 2 dominates. Also, recall and precision for Vanilla GCN is very similar to logistic
regression which implies that once we have node2vec features, we have all the neighborhood information
we need and trying to gather more information from neighbors (which GCN does) is not necessary and
a simple algorithm like logistic regression suffices.

H Class 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ Average H
Vanilla GCN - Node2vec Features; Hyper-parameters - lr=0.001,dr=0.1
Recall 0.0121 | 0.2569 | 0.6836 | 0.0300 | 0.1000 | 0.0000 | 0.0000 | 0.0483 | 0.1251
Precision 0.25 0.4179 | 0.6982 | 0.4000 | 1.0000 | 0.0000 | 0.0000 | 0.2059 | 0.1965
Balanced GCN - Node2vec Features; Hyper-parameters - Ir=0.001,dr=0.1
Recall 0.01205 | 0.6009 | 0.1343 | 0.0615 | 0.0185 | 0.1000 | 0.5312 | 0.0690 | 0.1909
Precision | 1.0000 | 0.4781 | 0.6429 | 0.1740 | 0.3333 | 0.0253 | 0.0370 | 0.1695 | 0.3859

Table 2: Results: Graph Convolutional Networks

GraphSAGE: Fig 6 summarizes the values of training and validation loss while training in GraphSAGE.
We can see that training is more stable compared to GCN as the loss goes down in a consistent manner
unlike GCN. We also see validation loss increases epoch 3, which is expected as the model starts to
over-fit to training data. We also see that we get best results for learning rate 0.01 and no dropout. For
these hyper-parameters values, neighborhood sample size doesn’t affect loss much as can be seen in the
plots. Further, we also show results for higher(0.05) and lower(0.005) learning rates to emphasize that
both training and validation losses are lower for chosen hyper-parameters.

Train Loss
N N
) wn

-
5

0.5

30 O

3.4

w
9
7

Validation Loss
w
o
e

¥
\

26 ™~ -

24

Epoch

(a) Training Loss (b) Validation Loss

Figure 6: Vanilla GraphSAGE

The results for GraphSAGE are summarized in table 3. We perform experiments with identity features
- where the node embeddings are initialized randomly and node2vec features - where the node embed-
dings are initialized using node2vec results, like in LR and GCN. Note that we can’t work with identity
features in LR (because LR doesn’t back-propagates into features so we need descriptive features) and
GCN (because GCN works with all nodes in the graph in a batch mode and not in a mini-batch mode
like GraphSAGE which forces using sparse feature representation which can’t be back-propagated into
as a limitation of tensorflow which in-turn implies that GCN needs representative features for training
as well). As GraphSAGE uses sampling techniques, it can be made to work for mini-batches and thus
allows us to back-propagate to input features thus making possible the use of identity features. Further,

we explored weighted and unweighted loss with GraphSAGE as well.

Vanilla GraphSAGE outperforms LR and GCN with node2vec features with and achieves the best average
recall of 0.8059 with weighted loss.We believe that one the advantage of using GraphSAGE is that it has
capability to predict multiple labels as we use sigmotid activation at the last layer and predict positive
over threshold of 0.5. Detecting multiple labels in difficult in GCN due to reason discussed earlier.
However, we tried alleviating this situation by drawing inspiration from GraphSAGE and investigated
with a sigmoid non-linearity with thresholding. However, though we did manage to be able to significantly
increase recall, we could not accept the drop in overall precision we obtained as a result.

H Class ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 ‘ Average H
Vanilla GraphSAGE - Identity Features; Hyper-parameters - Ir=0.01,d=0,|S1|=25,|S2|=10
Recall 0.0000 | 0.0550 | 0.8030 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0966 0.1193

Precision | 0.0000 | 0.2667 | 0.6642 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4516 0.1728
Balanced GraphSAGE - Identity Features; Hyper-parameters - Ir=0.1,d=0,|S1|=25,|S2|=10
Recall 0.0964 | 0.2431 | 0.6687 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3172 0.1657

Precision | 0.1455 | 0.4309 | 0.6588 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3217 0.1947
Vanilla GraphSAGE - Node2vec Features; Hyper-parameters - Ir=0.01,d=0,|S1|=25,|S2|=10
Recall 0.3470 | 0.4128 | 0.8508 | 0.1800 | 0.4928 | 0.6667 | 0.2745 | 0.1172 0.4177

Precision | 0.5882 | 0.5056 | 0.6582 | 0.1300 | 0.1000 | 0.5327 | 0.2285 | 0.3954 0.3923

Balanced GraphSAGE - Node2vec Features; Hyper-parameters - Ir=0.01,d=0,|S1|=25,/S2|=10
Recall 1.0000 | 1.0000 | 1.0000 | 0.1846 | 0.9815 | 0.9671 | 0.3135 | 1.0000 0.8059

Precision | 0.1660 | 0.4360 | 0.6700 | 0.2069 | 0.1513 | 0.5782 | 0.3124 | 0.29000 | 0.3513

Table 3: Results: GraphSAGE

8 Qualitative Analysis

In fig 7, we plot t-SNE on last hidden-layer activations of a few training examples in GraphSAGE for the
best model observed. Comparing this figure to 4b, we can see that even though we start from embeddings
which are pretty mixed up, GraphSAGE tries to cluster the nodes that belong to same disease groups -
we see that most of the green nodes (corresponding to group 2) are to the left and most of the orange
nodes (corresponding to group 1) are towards the right of the plot. Further, nodes corresponding to
group 7 try to maintain small clusters spread throughout the plot same as node2vec in fig 4b.

s Disease group 0

15 > ""ﬁ‘_"‘q@:—*& - Disease group 1

. ,}::_ o y 3 .;_" -2 o Disease group 2

P g PR Y e Disease group 3

10 P a AROP YIRS L < Diccase oroup 4

_,-,f 5, s, ‘;,-i: - n‘.:. Haradt] oy 2 s Disease group 5

s Wi wf? 8 e o e id Disease group 6
.

we fi‘w Pt et o S f ey = Disease group 7
"5 ﬁi‘ii K N, 8 vy) r;i .-' >’
[. o . = H.:.‘-'. Hf'i..w._e_i e

Figure 7: Activations at last hidden layer in GraphSAGE training

Additionally, it maybe noted that though we have very low for some classes, typically the ones that were
the least represented during training, using balanced / weighted loss functions significantly improved
performance overall, as well as for these under-represented classes.

9 Conclusion and Future Work

For all our models, we trained using vanilla unweighted loss functions without compensating for skewed
outcome class representations, and also re-ran the same weighing the loss function to allow for under-
represented classes to also influence the learning process.

Starting with the logistic regression baseline, operated on the Node2Vec features, we can see an im-
provement across both precision and recall measures when moving from the vanilla loss function to the
weighted (balanced) version. It is easy to see how we have managed to considerably increase recall scores
of some classes from almost 0 to as high as 0.53.

We also observe a similar improvement in moving to a balanced loss for GCN and GraphSAGE, where we
are able to increase recall significantly, without compromising in the overall precision metric. It is inter-
esting to note that GCN, uses a softmax non-linearity at the final output layer, and therefore predicting
only a single label for a disease-group associated with a protein node, while GraphSAGE, with its sigmoid
activation is able to appropriately threshold and output multi-class labels, which we see outperforming
GCN when using node2vec features.

In future we would want to explore network motifs. Literature has shown a characteristic of PPI network
structures around disease proteins, indicating that disease proteins display significance in terms of the
orbit positions they tend to inhabit. Therefore, we plan to investigate these network motifs and incorpo-
rate these motifs into our current feature set. Additonally, we would want to explore different multi-task
learning strategies to be able to better predict the number of disease classes associated with each protein
in a multi-class setting.

References

[1] Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive Representation Learning on Large
Graphs." arXiv preprint arXiv:1706.02216 (2017).

[2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional net-
works." arXiv preprint arXiv:1609.02907 (2016).

[3] Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2016.

[4] https://github.com/aditya-grover /node2vec

[5] Agrawal, Monica, Marinka Zitnik, and Jure Leskovec. "Large-Scale Analysis of Disease Pathways
in the Human Interactome." bioRxiv (2017): 189787.

[6] Menche, J., Sharma, A., Kitsak, M., Ghiassian, S. D., Vidal, M., Loscalzo, J., & Barabéasi, A.
L. (2015). Uncovering disease-disease relationships through the incomplete interactome. Science,
347(6224), 1257601.

[7] Guney, Emre, Jorg Menche, Marc Vidal, and Albert-Laszlo Barabasi. "Network-based in silico drug
efficacy screening." Nature communications 7 (2016): 10331.

[8] Cui, Qing, et al. "Knet: A general framework for learning word embedding using morphological
knowledge." ACM Transactions on Information Systems (TOIS) 34.1 (2015): 4.

[9] J. Pinero et al., Database 2015 (2015).
[10] https://github.com/tkipf/gen

10

	Abstract
	Introduction
	Problem Statement
	Related Work
	Discussion
	Critique

	Datasets
	Approach
	Experiments and Results
	Qualitative Analysis
	Conclusion and Future Work

