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Predicting Hospital Readmission via
Cost-sensitive Deep Learning
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Abstract—With increased use of electronic medical records (EMRs), data mining on medical data has great potential to improve the
quality of hospital treatment and increase the survival rate of patients. Early readmission prediction enables early intervention, which is
essential to preventing serious or life-threatening events, and act as a substantial contributor to reduce healthcare costs. Existing works
on predicting readmission often focus on certain vital signs and diseases by extracting statistical features. They also fail to consider
skewness of class labels in medical data and different costs of misclassification errors. In this paper, we recur to the merits of
convolutional neural networks (CNN) to automatically learn features from time series of vital sign, and categorical feature embedding to
effectively encode feature vectors with heterogeneous clinical features, such as demographics, hospitalization history, vital signs and
laboratory tests. Then, both learnt features via CNN and statistical features via feature embedding are fed into a multilayer perceptron
(MLP) for prediction. We use a cost-sensitive formulation to train MLP during prediction to tackle the imbalance and skewness
challenge. We validate the proposed approach on two real medical datasets from Barnes-Jewish Hospital, and all data is taken from
historical EMR databases and reflects the kinds of data that would realistically be available at the clinical prediction system in hospitals.
We find that early prediction of readmission is possible and when compared with state-of-the-art existing methods used by hospitals,
our methods perform significantly better. For example, using the general hospital wards data for 30-day readmission prediction, the
area under the curve (AUC) for the proposed model was 0.70, significantly higher than several baselines. Based on these results, a
system is being deployed in hospital settings with the proposed forecasting algorithms to support treatment.

Index Terms—Readmission Prediction; Deep Learning; Electronic Medical Records; Cost-sensitive; Categorical Feature Embedding.
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1 INTRODUCTION

B IG-DATA based predictive algorithms in medical com-
munity has been an active research topic since the

Electronic Medical Records (EMRs) captured rich clinical
and related temporal information [20]. The applications of
machine learning to solve important problems in healthcare,
such as predicting readmission [21], [25], have the potential
to revolutionize clinical care and early prevention [30].

Background and Significance: A hospital readmission is
defined as admission to a hospital within a specified time
frame after an original admission. Different time frames
such as 30-day, 90-day, and 1-year readmissions have been
used for research purposes. Readmission may occur for
planned or unplanned reasons, and at the same hospital as
original or admission at a different one [8]. Readmission
prediction is significant for two reasons: quality and cost
of health care. High readmission rate reflects relatively
low quality and also has negative social impacts on the
patients and on the hospital [14]. Nearly 20 percent of
hospital patients are readmitted within 30 days of discharge,
a $35 billion problem for both patients and the healthcare
system. Avoidable readmissions account for around $17
billion a year [12]. Consequently, readmission is becoming
more important as an indicator for evaluating the overall
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healthcare effectiveness. Identifying patients at high risk for
readmission early during hospitalization may aid efforts
in reducing readmissions [23]. It is significant to predict
readmission early in order to prevent it.

We propose to develop, validate and assess machine
learning, forecasting algorithms that predict readmission for
individual patients. The forecasting algorithms will be based
on data consolidated from heterogeneous sources, including
the patient’s electronic medical record, the array of phys-
iological monitors in the operating room and the general
hospital wards, and evidence-based scientific literature.

There are some existing forecasting algorithms being
used to predict readmission [2], [3], [8], [19], [21]. However,
these algorithms have some shortcomings, making them
inapplicable to our datasets and objectives:

1. They predict patients without considering the mis-
prediction costs of different categories. In a readmission pre-
diction problem where the occurred cases (minority class)
are usually quite rare as compared with normal populations
(majority class), the recognition goal is to detect patients
with readmission. A favorable classification model is one
that provides a higher identification rate on the minority
class (Positive Prediction Value) under a reasonably good
prediction rate on the majority class (Negative Prediction
Value).

2. Time-series is commonly used in the medical domain
since medical equipments record vital signs with certain
time interval. They first extract discriminative features from
the original time series and then use off-the-shelf classifiers
to predict, which is ad-hoc and separates the feature ex-
traction part with the classification part, resulting in limited
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accuracy performance.
3. They use inefficient feature encoding and limited

patient characteristics are related to a certain disease. A
straightforward way for EMR feature encoding is to extract
or create feature vector manually. The hand-crafted features
are usually a mix of numerical and categorical features,
which poses a challenge for directly applying classifiers
as they can only deal with numerical inputs by design.
Furthermore, the values of categorical features are indica-
tors of categories instead of true values, resulting in they
can not be input to classifiers directly. Thus, an effective
feature encoding method is required to improve prediction
accuracy. Besides, with the increasing use of EMRs, more
existing patient characteristics can result in more effective
prediction [19].

4. Though our goal is to make predictions for various
medical datasets, such as data from general wards or oper-
ating rooms, they have not provided an integrated clinical
decision support system for hospitals to predict readmission
from heterogeneous, multi-scale, and high-dimensional da-
ta.

Nowadays, deep learning has been one of the most
prominent machine learning techniques [1], [11], [18], [22].
Deep neural networks have multiple hidden layers structure
and each hidden layer has non-linear activation functions.
Therefore, deep learning has capability to model data with
non-linear structures and learn high-level representation of
features. In other words, deep learning aims to model high-
level abstractions in the data using nonlinear transforma-
tions. Such abstractions can then be used to interpret the
data, or to build better predictive models. Through stacking
multiple layers, the model is able to capture much richer
structures and learn significantly more complicated func-
tions. Convolutional Neural Networks (CNN) is reported
as a successful technique for time series classification [7],
[9], [24] because of its ability to automatically learn complex
feature representation using its convolutional layers. Thus,
CNN is able to handle time series data without requiring
any handcrafted features.

We aim to apply deep learning techniques to devel-
op better models for early readmission prediction. At the
same time, we need to consider the imbalanced or skewed
class distribution problem, which yields varying costs in-
formation for different types of misclassification errors. In
this paper, we present cost-sensitive deep learning models
for clinical readmission prediction using data collected by
monitoring different vital signs, demographics and lab re-
sults. Specifically, we first automatically learn the feature
representation from the vital signs time series using CNN,
and simultaneously construct the feature vectors by cate-
gorical feature embedding. Without loss of generality, we
also extract statistical features from time series (such as
first order and second order features) and feed into the
feature vector. Then, we combine the learned time series
features from CNN and feature vectors from categorical
feature embedding as input to a Multi Layer Perceptron
(with multiple hidden layers). At the output layer, a cost-
sensitive prediction formulation is used to address the
imbalanced challenge. A cost-sensitive prediction can be
obtained using Bayesian optimal decision based on a cost
matrix. The cost matrix denotes the uneven identification

importance between classes, so that the proposed approach
put on weights on learning towards the rare class associated
with higher misclassification cost. The method we develop
in this paper is focused on a much broader class of patients
(ward patients and surgery patients), and deployed in a
real system for supporting treatment and decision making.
Model performance metrics are compared to state-of-the-art
approaches. Our method outperforms the existing methods
on real clinical datasets, and is being deployed on a real
system at a major hospital.

The remainder of this paper is organized as follows.
Section 2 describes the data we used and the problem
definition. We introduce the proposed feature extracting
and learning approach in Section 3. Section 4 shows the
proposed predictive model with the learned features. In
Section 5, we conduct the experiments on the real-world
EMR datasets and compare the proposed method with
benchmark approaches. The results are discussed in Section
6 and the system deployment is demonstrated in Section 7.
We review traditional readmission prediction methods and
feature learning from EMRs in Section 8. Lastly, we draw
conclusions in Section 9.

2 DATA DESCRIPTION

The work described in this paper was done in partnership
with Washington University School of Medicine and Barnes-
Jewish Hospital, one of the largest hospitals in the United
States. We used two real datasets from Barnes-Jewish Hos-
pital. A large database is from the general hospital wards
(GHWs) between July 2007 and July 2011. GHWs gathered
data from various sources, including more than 30 vital
signs (pulse, shock index, temperature, heart rate etc.) from
routine clinical processes, demographics, real-time bedside
monitoring and existing electronic data sources from pa-
tients at the general hospital wards (GHWs) at Barnes-
Jewish Hospital. The readmission class distribution is im-
balanced, which makes the prediction task very difficult.

Another dataset is operating room pilot data (ORP),
which is derived from heterogeneous sources, including the
patient’s electronic medical record, the array of physiolog-
ical monitors in the operating room, laboratory tests, and
evidence-based scientific literature. The ORP includes more
than 40 vital signs during surgery (such as heart rate which
are recorded every minute) and patients’ pre-operation in-
formation such as demographics, past hospitalization histo-
ry, surgery information and tests. The demographic features
in our data include patients’ age, gender, height, weight,
race and so on. The surgery information includes surgery
type, anesthesia type, and etc.

The purpose is to develop forecasting algorithms that
mine and analyze the data to predict the patients’ outcomes
(specifically, whether or not they would be re-admitted).
The forecasting algorithms will be based on data collected
from general wards or operating rooms. The algorithm will
facilitate patient-specific clinical decision support (such as
early readmission prediction) to enable early intervention.
The system is being implemented and deployed in the
Barnes-Jewish Hospital.
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Fig. 1. The architecture of feature embedding for categorical EMR
data. Each categorical feature is represented as a d-dimensional vector,
where d is user defined. The number of columns in the lookup table
is based on the features range calculated from the data dictionary.
Different color represents different categorical feature. Each categorical
feature would retrieve its corresponding embedding in the lookup table
as its new feature representation by index.

3 PREPROCESSING AND FEATURES

Data exploration and preprocessing, and feature extraction
are critical steps for the success of any application domain.
They are especially important for our clinical domain since
the data are noisy, complex, and heterogeneous. Thus, prior
to feature encoding, several preprocessing steps are applied
to eliminate outliers and find an appropriate feature repre-
sentation of patient’s states.

We first preprocess the dataset by removing the outliers.
The raw data typically contain many reading and input
errors because information are recorded by nurses and there
are inevitably errors introduced by manual operations. We
list the acceptable ranges of every feature based on the
domain knowledge of the medical experts in our team.
Then we perform a sanity check of the data and replace
the abnormal values that are outliers by the mean value of
the entire population.

Second, not all patients have values for all signs in a real
clinical data, and many types of clinical features involved in
lab tests are not routinely performed on all patients. We use
the medium value of a sign over the entire historical dataset
to fill the missing values.

Finally, we normalize the data to scale the values in each
bucket of every vital sign so that the data values range in the
interval [0,1]. Such normalization is helpful for prediction
algorithms such as deep learning.

A key aspect in any application of data mining is build-
ing effective features for classification or prediction. Before
building our model, we first worked with the physicians
from Barnes-Jewish Hospital as well as studied prior work
to determine useful features, since the input of our model
is based on the feature embedding from raw medical data.
Based on the characteristics of our datasets, we have discrete
features, continuous features, and time series features which
record the vital values at different time. The continuous
features (such as patient’s height) can be concatenated into
the feature vector directly since we have the normalization
process during preprocessing. However, values of categori-
cal features are indicator of a category instead of true values,
and time series of vital sign is usually high-dimensional
especially for a long monitor period. Thus, these features
are inapplicable to a classifier directly. Feature encoding is
required for categorical features and effective features need

to be extracted from the time series feature before being
added to the vector. In this paper, we use the statistical
features extracted from various of data types (i.e., numerical,
categorical, and time series) in the datasets, at the same time,
we adopt convolutional neural networks to automatically
learn discriminative features from vital sign. In this way,
the built features not only contain statistical information
but also hold temporal and local information as well as the
overall trend of time series.

3.1 Categorical Feature Embedding
Since neural networks can only deal with numerical inputs
by design, the categorical features can not be input to neural
networks directly. One-hot encoding is the most popular
way to convert a categorical feature to a numerical one. By
one-hot encoding, the new representation is a vector with
one element being one and all others being zero. However,
typically one-hot encoding results in high-dimensional s-
parse vectors if a categorical feature has plenty of categories.
To encode categorical features efficiently, we propose a cat-
egorical feature embedding approach that first converts the
categorical part to a numerical hidden representation which
is then concatenated with the original numerical part. This
new representation will be fed into the remaining neural
network and generate the final output.

We use a lookup table U that contains a numerical
embedding for each category in the categorical part. Figure
1 shows the lookup table component. There are independent
zones (represented by different color in Figure 1) in the
lookup table to represent different features. Categories from
the same feature locates in the same zone, and the number of
embedding in each zone equals to the number of categories
of the corresponding categorical feature. Each column in
the lookup table represents a category of a feature, and
each row is a d-dimensional embedding for a category. The
dimensional of d is user defined.

Assume there are P categorical features of xC , where
xC = [[xC ]1, · · · , [xC ]P ]. And the pth categorical feature has
Kp categories, such that [xC ]p ∈ {1, 2, · · · ,Kp}. The total
number of all categories is K =

∑P
p=1Kp.

Consequently,the lookup table is a matrix U ∈ Rd×K .
For instance, in Figure 1, d = 4 and K = 9 as P = 3,K1 =
3,K2 = 2,K3 = 4. The corresponding embedding in the
lookup table for each categorical feature can be retrieved,
and the lookup table can be updated and learned based on
backpropagation. After the feature embedding, categorical
features have new feature representation with numerical
values. Mathematically, let ui abe the ith column vector
in lookup table U, and q(j) be the index that the jth

categorical feature would use as index for retrieving. Let
Aj =

∑j
p=1Kp be the total number of previous categories

up to categorical feature j. The value of jth categorical
feature [xCj ], would retrieve embedding by index

q(j) = Aj−1 + [xC ]j (1)

After embedding retrieval, we obtain P number of d di-
mensional embeddings. Then element-wise summation is
applied to get the representation of all categorical features.
Suppose the new representation for categorical features is
g(xC). Then we have
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g(xC) =
P∑
j=1

uq(j) (2)

This new representation would then be fed into the next
layer in the neural networks, and all the embeddings are
updated and learned through backpropagation.

3.2 Feature Extraction from Time Series of Vital Sign
To capture the temporal effects in time series, we use a
bucketing technique. For the time series data of each patient,
we divided it into 2 buckets based on the care time (for ORP)
or room start time (for GHWs), and compute the features in
each bucket. Then, we extract first order features and second
order features from patients’ vital sign time series in each
bucket. The details of first order and second order feature
from time series are as follows.

3.2.1 First Order Features
We use some traditional statistical features as the first order
features. Specifically, the first order features include maxi-
mum, minimum, mean (µ), standard deviation(σ), skewness
and kurtosis in each bucket. Skewness is a measure of
symmetry of the probability distribution of a real-valued
random variable. The larger absolute value of skewness
means the greater deviation of its distribution. Kurtosis is
a measure of whether the data are heavy-tailed or light-
tailed relative to a normal distribution. A larger absolute
value of the kurtosis represents greater difference between
the steepness of its distribution and the normal distribution.
The formula of mean, standard deviation, skewness and
kurtosis are:

µ =

∑N
i=1 xi

N
, σ =

√∑N
i=1(xi − µ)

N
(3)

Skewness =

∑N
i=1(xi − µ)3

(N − 1)σ3
(4)

Kurtosis =

∑N
i=1(xi − µ)4

(N − 1)σ4
− 3 (5)

3.2.2 Second Order Features
The most commonly used second order features are co-
occurrence features. The co-occurrence features in one-
dimensional time series have been shown to perform better
than other second-order features [16]. The data is firstly
quantized into Q levels, and then a two dimensional matrix
φ(i, j)(1 ≤ i, j ≤ Q) is constructed. Point (i, j) in the
matrix represents the number of times that a point in the
sequence with level i is followed, at a distance d1, by a
point with level j. The co-occurrence features we used are
Energy (E1), Entropy (E2), Correlation (ρx,y), Inertia, and
Local Homogeneity (LH). The features are calculated by the
following equations:

E1 =

Q∑
i=1

Q∑
j=1

φ(i, j)2, E2 =

Q∑
i=1

Q∑
j=1

φ(i, j) ∗ log(φ(i, j))

ρx,y =

∑Q
i=1

∑Q
j=1(i− µx)(j − µy)φ(i, j)

σxσy

where:

µx =

∑Q
i=1 i

∑Q
j=1 φ(i, j)

Q
, σ2
x =

∑Q
i=1(i− µx)2

∑Q
j=1 φ(i, j)

Q

µy =

∑Q
j=1 j

∑Q
i=1 φ(i, j)

Q
, σ2
y =

∑Q
j=1(j − µy)2

∑Q
i=1 φ(i, j)

Q

Inertia =

Q∑
i=1

Q∑
j=1

(i− j)2φ(i, j), LH =

Q∑
i=1

Q∑
j=1

φ(i, j)

1 + (i− j)2

We set Q = 5 in our experiments. The extracted first
order and second order features are concatenated into the
one-hot vector as input to our model.

3.3 Convolutional Neural Network for Time Series Fea-
ture Learning

We use Convolutional Neural Network (CNN) to automat-
ically learn features from time series (such as heart rate,
temperature and blood pressure which are recorded every
minute). In our setting, we regard CNN as feature extractor.
The input time series is fed into CNN model, containing
several convolutional layers, activation layers and max-
pooling layers to learn features.

The convolutional layer contains a set of learnable filters
which are updated using the backpropagation algorithm.
Convolution operation can capture local temporal informa-
tion from the time series. We use the same filter size through
all convolutional layers.

The activation layer introduces the non-linearity into
neural networks and allows it to learn more complex model.
We adopt tanh(·) as our activation function in all activation
layers.

The max-pooling layer aims to provide an abstracted
form of the representation by down-sampling. At the same
time, it reduces the computational cost by reducing the
number of parameters to learn and provides basic trans-
lation invariance to the internal representation.

We used two convolutional layers for time series feature
learning, and followed by two pooling layers. The max-
pooling is used for down-sampling. Each max-pooling layer
is inserted in-between successive convolutional layers in the
CNN architecture. The filter size for two convolution layers
is 64 and 32, respectively. The convolved signal is pooled
with pool size of 2.

The statistical features can be combined with features
learnt from CNN, and furthure feed them into a multilayer
perceptronn for readmission prediction task. In principle,
our extracted and learnt features can be used as input to
any classification algorithms.

4 PREDICTION METHODOLOGY

A main challenge in our application is that we have severely
skewed datasets as there are much more non-readmission
patients than those with readmission. For example, among
2565 records in the GHWs data, only 406 have a 30-day
readmission. This extremely imbalanced class distribution
makes the prediction task very difficult.
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Fig. 2. CSDNN overall framework. There are three components in the architecture, including feature extraction/learning part, neural network part,
and prediction part. All three parts are connected through backpropagation algorithm. Identity mapping is used for numerical features, and lookup
table is for categorical feature embedding. In the meanwhile, we use convolutional neural networks to automatically learn features from time series
of vital sign. During prediction, CSDNN considers different costs of misclassification errors with a cost matrix C in the output layer. Once acquiring
predicted outcome y, the predicted errors can be calculated with cost matrix C according to the loss function in Eq. (9). All the parameters including
the categorical embedding matrix U, CNN parameters for time series feature learning as well as the weights and biases of each hidden layer are
learned jointly by backpropagation. Regularization techniques including dropout and L2 regularization are also applied to improve the generalization
ability of the network.

4.1 Classification Algorithms

In the medical domain, the cost of misdiagnosing abnormal
patient as healthy is different with misdiagnosing healthy as
abnormal patient. In most cases, the proportion of normal
patients is larger than abnormal patients (e.g., readmission
and ICU patients). Therefore, in our datasets, we have
two crucial issues during classification. One is imbalanced
outcomes and another one is low sensitivity of abnormal
patients. Standard classifiers, however, pay less attention
to rare cases in an imbalanced dataset. Consequently, test
patients belonging to the small class are misclassified more
often than those belonging to the prevalent class.

To over this problem, we formalize it as a cost-sensitive
classification problem. Cost-sensitive classification consider-
s the varying costs of different misclassification types. A cost
matrix encodes the penalty of classifying samples from one
class as another. Bayesian optimal decision can help obtain
the cost-sensitive prediction . Eq. 6 shows the predicted class
label that reaches the lowest expected cost:

ypred = argmin
1≤k≤K

K∑
i=1

P (y = i|x,W,b)C(k, i) (6)

where C(k, i) denotes the cost of predicting a sample from
class k as class i.K is the total number of classes. In our case,
K equals 2 since this is a binary readmission classification.
The diagonal elements in the cost matrix are the weights of
corresponding categories, others are zero. Larger value in
the cost matrix impose larger penalty. In the experiments,
we set values in the cost matrix based on parameter study
method. The P (y = i|x,W,b) is to estimate the probability
of class i given x. The probability estimator can be any
classifiers which the outputs are probability. In this work,
we use a modified cross entropy loss function that embeds
the cost information. We denote the deep neural network
(DNN) with cost sensitive as CSDNN for short.

The CSDNN consists of one input layer, one output layer
and multiple hidden layers. There are m neurons in the in-
put layer, where m is the dimension of input feature vector.
The hidden layers are fully-connected with the previous
layer. Each hidden layer h uses Wh as a fully-connected
weight matrix and bh as a bias vector that enters the neu-
rons. Then, for an input feature vector x, the output of the
hidden layer is H(Whx+ bh), where the activation function
H can be sigmod or tanh. We used tanh in the experiments
because it typically yields faster training (and sometimes
better local minima), that is,H(α) = (eα−e−α)/(eα+e−α).
AfterH hidden layers, the DNN describes a complex feature
transform function by computing:

F(x) = H(WH · H(· · ·H(W2 · H(W1x + b1) + b2) · · · ) + bH)
(7)

Then, an output layer is placed after the H-th hidden
layer. From hidden layer to output layer is a softmax func-
tion to output the probability of feature vector x belonging
to each category. Hence, there are K neurons (outputs) in
the output layer, where the i-th neuron with weights Wi

o

and bias bio (the subscript o represents the parameters in the
output layer). The estimate of probability of class i given x
can be formulated as follows:

P (y = i|x,W,b) = softmaxi(WoF(x) + bo)

=
exp(Wi

oF(x) + bio)∑K
k=1 exp(W

k
oF(x) + bko)

(8)

To learn and optimize the parameters of the model, we
set the cross entropy as the loss function and minimize the
loss function with respect to {Wh}Hh=1, {bh}Hh=1, Wo and bo.
The loss function over the training set is as follows:

Loss = − 1

N

N∑
n=1

log
[ K∑
i=1

P (y = i|xn,W,b)C(yn, i)
]
+
λ

2
‖W‖22

(9)
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where N is the total number of patients, yn is the read-
mission indicator for the n-th patient where 1 indicates
readmission and 0 control, and P (y = yn|xn,W,b) is the
n-th patient calculated by the model. The class number K
equals 2 for readmission prediction. The loss minimization
and parameter optimization can be performed through the
backpropagation using mini-batch stochastic gradient de-
scent.

The CSDNN framework is shown in Figure 2. For the nu-
merical features, we use identity mapping to map numerical
values to a feature vector. The lookup table is learned for
categorical feature embedding. Then, all the features from
identity mapping, categorical feature embedding, CNN as
well as statistical feature are concatenated and normalized
as input vector to a multilayer perceptron. The cost matrix
is applied to the loss function in Eq. (9) during prediction
phase. We use two hidden layers MLP. There are 128 hidden
units for the first hidden layer and 64 units in the second
hidden layer. We also use dropout to avoid over-fitting.
To estimate parameters of models, we utilize gradient-
based optimization method to minimize the loss function.
Since backpropagation is an efficient and most widely used
gradient-based method in neural networks [29], we use
backpropagation algorithm to train our CSDNN model. As
mini-batch gradient descent could converge faster than full-
batch for large scale datasets, we adopt mini-batch gradient
descent with momentum to efficient update the parameters.

5 EXPERIMENTS AND EVALUATION
5.1 Datasets and Setup
We evaluate performance of proposed CSDNN algorithm
on two real datasets from Barnes-Jewish Hospital. One data
is from general hospital wards (GHWs) while another one
is pilot data from operating room (ORP). The two datasets
are described in Section 2, and more details are as follows:

GHWs data: We aim to predict 30-day and 60-day
readmission on the GHWs data. There are 41,503 patient
visits in the GHWs data, and 2,565 have the outcomes of
readmission or not. In this dataset, each patient is measured
for 34 indicators, including demographics, vital signs (pulse,
shock index, mean arterial blood pressure, temperature, and
respiratory rate), and lab tests (albumin, bilirubin, BUN, cre-
atinine, sodium, potassium, glucose, hemoglobin, white cell
count, INR, and other routine chemistry and hematology
results). A total of 406 patients are readmitted within 30
days and 538 instances are readmitted within 60 days.

ORP data: We aim to predict 30-days and 1-year read-
mission in the ORP data (there is no 60-day outcomes in
this dataset). There are 700 patients in the pilot data with
more than 50 pre-operation features and 26 intra-operation
vital signs of each patient. Since there are plenty of null
outcomes in the pilot dataset, we remove the patients with
null outcomes. A total of 157 patients are readmitted within
1 year and 124 patients are readmitted within 30 days.

For both datasets, we randomly select 60%, 15%, and
25% from readmission and non-readmission patients as
training data, validation data and test data, respectively. We
choose the best parameters through validation data. Based
on the data distribution and parameter study, we set the cost
of misclassifying readmission patients to non-readmission

TABLE 1
Confusion Matrix

True Condition

Positive Negative

Predicted

Condition

Positive True Positive (TP) False Positive (FP)

Negtive False Negative (FN) True Negative (TN)

patients is twice as many as misclassifying non-readmission
patients to readmission patients on the GHWs data, and 1.5
times on the ORP data.

5.2 Evaluation Criteria
Following the most common procedure for evaluating mod-
els for early predicting readmission, we use: ROC Receives
Operating Characteristic) Curve, AUC (Area Under ROC
Curve), Accuracy, Sensitivity (Recall), Specificity (Precision),
PPV (Positive Predictive Value), and NPV (Negative Predic-
tive Value) to evaluate the proposed method. To compute
the measurements, we can use a confusion matrix illustrated
in Table 1 to summarize the results of testing the algorithm.
From Table 1, the accuracy, specificity, sensitivity, F1-score,
NPV and PPV can be calculated from Eq. (10).

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP

PPV =
TP

TP + FP
, NPV =

TN

TN + FN

F1 = 2 · PPV · Sensitivity
PPV + Sensitivity

=
TP + TN

TP + TN + FP + FN
(10)

Baselines: We evaluate CSDNN for comparison with
existing approaches used in hospitals. From the literature
study, the existing predictive methods for readmission are
mainly based on feature extraction for specific disease or
dataset, and then input the extracted features to classifiers.
The most widely used classifiers are Support Vector Ma-
chine (SVM), Logistic Regression(LR), Decision Tree (DT),
Random Forest (RF) and Artificial Neural Networks (ANN).
In spite of the settings of our problem are not exactly
the same with all the baselines, we implement baselines
based on their methodologies used in the state-of-the-art
approaches for readmission prediction. Specifically, Mao
et al. [16] proposed an integrated data mining approach
with the statistical features (in Sections 3.2.1 and 3.2.2)
but without CNN feature learning. They applied an ex-
ploratory undersampling [15] method to deal with the class-
imbalance problem, and used RF as classifier and obtain
good performance. Somanchi et al. [19] extracted features
from heterogeneous data source (such as demographics and
vitals), and employed SVM as classifier for cardiac arrest
early prediction. Kim et al. [13] used extra physiological
variables extracted from an APACHE critical care system,
and shows DT classifier achieves the best performance. Al-
mayyan [2] selected discriminative features using PSO and
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Fig. 3. ROC curves of 1-year readmission prediction on the ORP
dataset.
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Fig. 4. ROC curves of 30-day readmission prediction on the ORP
dataset.

several feature selection techniques to reduce the features
dimension, and applied random forest classifier to diagnose
lymphatic diseases. Futoma [8] applied ANN for predicting
early hospital readmission and achieved good predictive
performance than regression methods.

For simplicity, we use Mao KDD12, Somanchi KDD15,
Kim HIR14, Almayyan JILSA16, and Futoma JBI15 for
short to represent the benchmark approaches.

6 RESULTS AND DISCUSSION

Results: Tables 3-5 and Figures 3-6 present the performance
of the different predictive approaches on the GHWs and the
ORP datasets. In comparison to the state-of-the-art baselines
on the test set, we observed that our model (CSDNN)
performs better than baselines in terms of AUC and PPV.
The PPVs of our model are approximately twice the best
value of that found in the baselines on the GHWs dataset.
Obviously, the PPV is statistically significantly improved
by using cost-sensitive deep learning. This is critical since
the misclassification costs of readmission patients is more
serious. Our goal is to make the predictions for readmission
patients as precise as possible under high NPV, which
enables the hospital to intervene early, as well as adjust
the schedules for physicians and nurses to optimize overall
quality of care for all patients. As we can observe from the
ROC curves in Figures 3-6, under the same false positive
rate, we are able to predict readmission with high true
positive rate, which is better than that of in the baselines.

Discussion: We achieved high accuracy mainly because
we used both sufficient statistical features and automatically
learned time series features by convolutional neural net-
works (CNN), as well as we consider the misclassification
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Fig. 5. ROC curves of 30-day readmission prediction on the GHWs
dataset.
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Fig. 6. ROC curves of 60-day readmission prediction on the GHWs
dataset.

costs to improve PPV. Compared with traditional statistical
features, CNN can learn a hierarchical feature representa-
tion from raw data automatically, which make it possible
to improve the accuracy of feature-based methods. Cost-
sensitive deep learning approach ensures the prediction of
rare but high misclassification cost class, which are devel-
oped by introducing cost items into the learning framework.
However, this may affect the prediction for non-readmission
patients (indicated by NPV). Thus, the PPV and NPV need
to be tradeoff. As we believe the cost of a false positive
is considerably higher than a false negative, relatively low
NPV may be a tolerable tradeoff.

Sensitivity analysis: For any test, there is usually a trade-
off between the different measures. This tradeoff can be
represented using a ROC curve, which is a plot of sensitivity
or true positive rate, versus false positive rate (1-specificity).
For practical deployment in hospitals, a high specificity (e.g.
>90%) is needed. The ROC figures also show the results of
all algorithms with specificity being fixed close to 0.90. Even
at this relatively high specificity, the CSDNN approach can
achieve a sensitivity of around 35% on the ORP data. The
sensitivity of ORP data is relatively higher than GHWs data,
because the ORP data is a small pilot data and not very
imbalance compared with GHWs data.

7 SYSTEM DEPLOYMENT

The work described here was done in partnership with
Barnes-Jewish Hospital, one of the largest hospitals in the
United States. Based on our performance, the results is
good enough to deploy a decision support system with
the proposed predictive algorithms to support treatment.
The purpose of the clinical decision support system is to
identify prognostic factors and suggest interventions based
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TABLE 2
30-day readmission prediction on the GHWs dataset.

Method Accuracy Specificity Sensitivity F1-Score AUC NPV PPV

Somanchi KDD15 0.83 0.85 0.08 0.15 0.53 0.88 0.19
Mao KDD12 0.72 0.86 0.18 0.30 0.52 0.85 0.20
Kim HIR14 0.85 0.85 0.00 0.00 0.61 0.89 0.08

Almayyan JILSA16 0.84 0.85 0.11 0.19 0.57 0.86 0.15
Futoma JBI15 0.84 0.86 0.23 0.36 0.62 0.87 0.16

CSDNN 0.89 0.89 0.26 0.44 0.70 0.85 0.37

TABLE 3
60-day readmission prediction on the GHWs dataset.

Method Accuracy Specificity Sensitivity F1-Score AUC NPV PPV

Somanchi KDD15 0.87 0.91 0.19 0.31 0.60 0.90 0.25
Mao KDD12 0.84 0.91 0.19 0.31 0.56 0.90 0.18
Kim HIR14 0.90 0.90 0.00 0.00 0.59 0.96 0.08

Almayyan JILSA16 0.90 0.91 0.23 0.37 0.61 0.98 0.03
Futoma JBI15 0.89 0.91 0.23 0.37 0.66 0.95 0.06

CSDNN 0.92 0.93 0.26 0.45 0.71 0.91 0.31

TABLE 4
1-year readmission prediction on the ORP dataset.

Method Accuracy Specificity Sensitivity F1-Score AUC NPV PPV

Somanchi KDD15 0.64 0.70 0.16 0.26 0.58 0.87 0.20
Mao KDD12 0.67 0.74 0.21 0.32 0.55 0.81 0.15
Kim HIR14 0.61 0.77 0.31 0.44 0.63 0.82 0.37

Almayyan JILSA16 0.71 0.76 0.38 0.51 0.55 0.87 0.08
Futoma JBI15 0.68 0.78 0.35 0.48 0.71 0.80 0.32

CSDNN 0.77 0.79 0.41 0.54 0.76 0.82 0.42

TABLE 5
30-day readmission prediction on the ORP dataset.

Method Accuracy Specificity Sensitivity F1-Score AUC NPV PPV
Somanchi KDD15 0.65 0.72 0.00 0.00 0.65 0.87 0.06

Mao KDD12 0.65 0.74 0.22 0.34 0.52 0.82 0.15
Kim HIR14 0.61 0.80 0.24 0.37 0.63 0.86 0.22

Almayyan JILSA16 0.73 0.78 0.25 0.38 0.64 0.85 0.23
Futoma JBI15 0.78 0.83 0.41 0.55 0.69 0.82 0.25

CSDNN 0.82 0.87 0.49 0.64 0.73 0.88 0.35

on novel feature extracting and learning algorithms using
heterogeneous data.

We are building up a system to deploy our CSDNN
algorithm for early readmission prediction. The system ar-
chitecture is demonstrated in Figure 7. The system is an
internet based tool for medical data analysis and outcome
prediction, for example, readmission prediction via our CS-
DD algorithm. There are four key components in the system:
1) Data acquisition. There are user-friendly interfaces to
guide user how to submit a job and how to train a model.
Physicians can upload historical EMR data to the system
following the sample data format. 2) Data preprocessing.
After uploading the training data by physicians, the system
preprocesses the raw data with several modules, including
feature extracting, feature encoding and feature learning.
3) Model selection. Users can select which model will be
trained. Since we integrated several models into the system
for different tasks, users should select one model for specific

purpose. In our case, CSDNN should be selected to predict
readmission. Once a model is selected, the system will train
the model using the uploaded data. 4) Prediction. Once
the training phase is over, test data can be fed into the
system. Test data will be analyzed using the trained model
(CSDNN). Finally, the system shows the results to indicate
whether the patient is readmission or not.

8 RELATED WORK

A number of forecasting algorithms exist that use medical
data for outcomes prediction [17], [20], [28]. To predict
whether a patient is readmitted to hospital, existing dedicat-
ed efforts are mostly focused on extracting effective features
and using accurate classifiers. In this section, we give a brief
overview of research efforts done along early readmission
prediction at hospital.

As readmission act as a substantial contributor of rising
healthcare costs, predicting readmission has been identified
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Fig. 7. An illustration of the system workflow. There are four key components in the system, including data acquisition, data preprocessing, model
selection, and prediction. The system has user-friendly interfaces and detailed user guide. Physicians can follow the steps and the case study on
the guide pages to predict readmission.

as one of the key problems for the healthcare domain.
However, there are not many solutions known to be effec-
tive. He et al. [10] present a data-driven method to predict
hospital readmission solely on administrative claims data.
Nevertheless, their method is unable to incorporate clinical
laboratory data in the model and as a result is not able
to directly compare its performance with other approaches.
Applying a comprehensive dataset that make generalization
more reasonable. Therefore, [2], [6], [19] leverage a variety
of data sources, including patient demographic and social
characteristics, medications, procedures, conditions, and lab
tests. However, they used the features designed for specific
disease. Some conventional modeling techniques, such as
support vector machine (SVM) or logistic regression are
widely used for classification problems [26], [27]. [13], [16],
[21] come up with more general statistical features used for
predicting readmission with conventional modeling tech-
niques. All of these methods relies on feature extraction and
the ability of classifiers, which limit the performance of their
methods.

To date, previous works on early readmission prediction
by extracting statistical features from vital signs are inef-
ficient feature representing methods, since they are hard
to capture temporal patterns present in longitudinal time
series data. Choi et al. [5] show deep learning models out-
perform the traditional modeling techniques in medical do-
main, and deep learning can be interpretable for healthcare
analysis [4]. However, these works based on deep learning
fail to consider the imbalanced data problem.

9 CONCLUSIONS

Readmission is a major source of cost for healthcare systems.
Readmission not only degrades the quality of health care
but also increases medical expenses. In this paper, we aim
to identify those patients who are likely to be readmitted to
the hospital. The identified patients can then be considered
by health care personnel for application of preventive alter-
native measures. The goal is to deliver superior prediction
quality, with good interpretability and high computational
efficiency, that supports early readmission prediction.

Deep learning has been one of the most prominent ma-
chine learning techniques nowadays. Deep learning makes
possible automatic feature learning from medical data. We

propose to use both traditional statistical features via cate-
gorical feature embedding and learnt features via convolu-
tional neural networks as input to a multilayer perceptron.
This way can utilize the advantage of local information,
temporal information and overall trends in vital signs time
series. However, imbalance or skewed class distribution are
challenges in medical data. For most cases, the recognition
importance of positive instances is higher than that of nega-
tive instances. Therefore, we further propose a cost-sensitive
deep learning model to address the imbalanced problem on
medical data. The effectiveness of the proposed approach is
validated on two real medical datasets from Barnes-Jewish
Hospital. Our performance is good enough to warrant an
actual clinical trial in hospital setting. Consequently, our
model has been deployed in a real system for readmission
prediction.
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