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Abstract

Extracting useful patterns from large network datasets has become a fundamental challenge in 

many domains. We present VISAGE, an interactive visual graph querying approach that empowers 

users to construct expressive queries, without writing complex code (e.g., finding money 

laundering rings of bankers and business owners). Our contributions are as follows: (1) we 

introduce graph autocomplete, an interactive approach that guides users to construct and refine 

queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using 

a data-driven approach, enabling users to specify queries with varying levels of specificity, from 

concrete and detailed (e.g., query by example), to abstract (e.g., with “wildcard” nodes of any 

types), to purely structural matching; (3) a twelve-participant, within-subject user study 

demonstrates VISAGE’s ease of use and the ability to construct graph queries significantly faster 

than using a conventional query language; (4) VISAGE works on real graphs with over 468K 

edges, achieving sub-second response times for common queries.
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1. INTRODUCTION

From e-commerce to computer security, graphs (or networks) are commonly used for 

capturing relationships among entities (e.g., who-buys-what on Amazon, who-called-whom 

networks, etc.). Finding interesting, suspicious, or malicious patterns in such graphs has 

been the core enabling technologies for solving many important problems, such as flagging 

“near cliques” formed among company insiders who carefully timed their financial 

transactions [27], or discovering “near-bipartite cores” formed among fraudsters and their 

accomplices in online auction sites [21]. Such pattern-finding process is formally called 

graph querying (or subgraph matching) [29, 28].

Many graph databases now support pattern matching and overcome the prohibitive costs of 

joining tables in relational databases [31]. Specifying graph patterns, unfortunately, can be a 

challenging task. Users often need to overcome steep learning curves to learn querying 

languages specific to the graph databases storing the graphs.

For example, many graph databases store graphs in the Resource Description Framework 

(RDF) format, which capture subject-predicate-object relationships among objects1. These 

systems support the SPARQL querying language, which is hard to learn and use [10]. The 

Cypher language, designed for the recent Neo4j graph database2, is easier to work with 

since its syntax more closely resembles SQL [13, 15], but expressing relationships among 

nodes can still be challenging and may require writing many lines of code even for 

conceptually simple queries [14], as demonstrated in Figure 1, which seeks a “triangle” of 

three similar action films from the 1980’s [23].

While there has been a lot of work in developing querying algorithms (e.g., [29, 28, 23]), 

there has been far less research on understanding and tackling the visualization, interaction, 

and usability challenges in the pattern specification process. Studying the user-facing aspects 

of subgraph matching is critical to fostering insights from interactive exploration and 

analysis. While early works suggested such potential [7, 3, 25], none evaluated their ideas 

with users. Hence, their usability and impact are not known.

We propose VISAGE, the Visual Adaptive Graph Engine3, which provides an adaptive, 

visual approach to graph query construction and refinement, to simplify and speed up graph 

query construction (Figure 3). VISAGE performs exact graph querying on large graphs and 

supports a wide variety of different node types and attributes.

Our main contributions are:

• We introduce an interaction technique for graphs called graph-autocomplete that 

guides users to construct and refine queries as they add nodes, edges, and 

conditions (feature constraints). Adding too many nodes, edges, or conditions 

may result in over-specification (too few results) or even a null-result (no results 

1http://www.w3.org/RDF/
2http://neo4j.com/
3Please see video-demo in supplementary material.
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found) [1]. Graph-autocomplete stops the user from constructing null-result-

queries and guides the query-specification process.

• We design and develop a system that utilizes recent advances in graph-databases 

to support a spectrum of querying styles, from abstract to example-driven 
approaches, while most other visual graph querying systems do not [7, 3]. In the 

abstract case, users start with a very abstract query and narrow down the possible 

results by providing feature and topological constraints. In the example-driven 

case, often called query by example (QBE) [32], users can specify an exact 

pattern and abstract from that pattern into a query of their choice. This technique 

allows users to start from an example or keep a value fixed in their query. In 

VISAGE, the user can star a node to fix its place in the query and across all of 

the results. We provide examples of both query-construction approaches in the 

Scenario Section.

• We demonstrate VISAGE’s ease of use and the ability to construct graph queries 

significantly faster than conventional query languages, through a twelve-

participant, within-subject user study.

2. SCENARIO

We provide two scenarios to illustrate how users may use VISAGE. The first scenario starts 

from a general question with a known structure and narrows the search through query 

refinement. The second scenario begins with a known example from which new similar 

results are found through abstraction.

The Rotten Tomatoes Movie Graph

Throughout this work, we use a Rotten Tomatoes4 film-actor-director graph. The graph has 

58,763 nodes: 17,072 films, 8,576 directors, and 33,115 actors. There are over 468,592 

undirected edges of three types: (1) film to film edges, based on Rotten Tomatoes’ crowd-

sourced similarity; (2) film to actor edges, showing who starred in what; (3) film to director, 

showing who directed what.

Scenario 1: From Abstract to Detailed

Imagine our user Lana wants to find co-directors who have starred the same actor in two 

films. She can begin specifying her query starting with very general terms. She right clicks 

the background and chooses to add a new director node, she repeats this to add another 

director, and again to add two films and an actor. She attaches the director to the films and 

the films to the actor (see Figure 2.1), by clicking and dragging from one node to the other 

(one pair at a time). She clicks the search button. She gets the results in the results list, we 

show only the first result (in Figure 3.2) to save space. She likes the first result (in Figure 

2.2) with the Coen Brothers, The Big Lebowski, O’ Brother Where Art Thou?, and John 

Goodman. Realizing that she enjoys the work of the Coen brothers, she stars both director 

nodes and O’ Brother Where Art Thou?, making them fixed values in the query. She 

4A movie review website. http://www.rottentomatoes.com/
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performs the search again with these values fixed. The query is now looking for any actor 

cast by the Coen brothers that was in O’ Brother Where Art Thou? and any other Coen film. 

She receives the result, in Figure 2.3, showing George Clooney in Intolerable Cruelty.

Scenario 2: Building up From a Known Example

Now consider the example-driven approach, where a user, Barry, takes a known example and 

abstracts it into a new query. Barry knows that Matt Damon and Ben Affleck both starred in 

Good Will Hunting, so he draws a node for each person and one for the film, and connects 

each actor to the film (see Figure 2.4). Specific nodes can be added manually by searching 

for them in the node search menu (see Figure 4.1). When a specific node is added via search, 

it’s automatically starred so that its value will remain fixed in the query. Nodes can be 

unstarred by clicking the star icon in the upper right corner (see the star by Matt Damon in 

Figure 2.4). Because Barry starred all the nodes in his query, searching only finds one result 

(if Barry was wrong and his initial example does not exist, no results will be shown and he 

will be alerted via text in the empty results panel). By specifying the exact value of the 

nodes, the query has become too specific and will need to be abstracted if Barry wants more 

results. Barry then unstars the specific film Good Will Hunting, to find any movie starring 

both actors (Figure 2.5). Barry can also leverage the visualized features of Good Will 
Hunting to specify new constraints based on the results (i.e., only selecting movies made in 

the 1990’s co-starring the actor duo). He uses a visualization of the possible constraints 

discussed in Section 4.1 and shown in Figure 5. Barry reissues his search and finds Dogma 
(among others), a potentially exciting film for him to watch.

3. VISAGE OVERVIEW

The user interface for VISAGE is comprised of a force directed query-graph visualization 

(Figure 3), a context menu that provides an overview of features (Figure 3.2 in blue), a 

feature exploration pane (Figure 5), and a results list (Figure 3.2). The graph view shows the 

current state of the user’s query. Matches are found in the background during interaction 

with the feature tree and query construction, but can be fetched manually using the “Find 

Matches” button at the top. Results are displayed in a popup list (Figure 3.3) which can be 

removed by clicking “Clear Results” at the top.

When users select a node, a blue border appears along with the node context menu (Figure 

3.2). The context menu shows the current selected feature constraints in green (if the user 

wants the selected movie to only have good ratings then they can select this constraint in the 

feature tree in Figure 3.3). When a result is selected, a summary of the current node’s 

features is shown in blue. If a particular node value from the data has been starred, its value 

in the query is fixed and can take only that specific value during the querying. Starred nodes 

have a golden star in the upper right (Matt Damon in Figure 2.4) and an additional context 

menu that reminds the user that the film is starred.

Adding new nodes is streamlined via our node tray, which is brought up by clicking the “+” 

icon on an existing node or right clicking on the background (see Figure 4.2). This menu 

displays the types of nodes that, if added, guarantee at least one match in the underlying 

network. Each node shows a pin, a star and a magnifying glass when moused over. The pin 
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spatially pins the node and the star allows users to star the node, keeping it constant in the 

query. The magnifying glass opens the node search menu, in Figure 4.1, which allows users 

to search for particular nodes via text. Users can quickly and easily add known values and 

pin them; facilitating QBE-like query construction.

VISAGE Querying Language

VISAGE allows the user to form complex graph queries, where the nodes can be as abstract 

as a wildcard or as constrained as taking a single value (recall the scenario with the Coen 

brothers in Figure 2). Graphs with a known type, for example a film, can have any number 

of additional constraints added to them; limiting the possible matches in the underlying 

dataset. The feature-tree allows users to explore hierarchical and non-hierarchical features 

(for both categorical and continuous variables).

4. DESIGN RATIONALE

Supporting Expressive Querying: Abstract to Specific

Graph querying requires the user to specify a group of nodes and their relationships; 

however, the constraints placed on the nodes can range wildly, from specific to abstract (e.g., 

a wildcard node of any type). A key design goal was to allow users to express their queries 

ranging from abstract to very specific. Users may start from known examples and abstract 

based off of the features of their example.

We are able to leverage the internal capabilities of Neo4j in terms of query conditions and 

indexing to support more complex queries. We support true wildcards (which can take on 

any node type and value). We use indices to support constant-time lookup for all starred 

nodes. Conditions are added by clicking on that value in the feature hierarchy. Users are free 

to add as many as they like. Within each feature (whether flat or hierarchical), we employ 

the logical or operation for constraints (i.e., year = 1997 or year = 1998). Across the 

features, we use a logical and for the constraints (i.e., genre = horror and year = 1988).

4.1 Improving Visual Query Refinement: Autocomplete

Graph autocomplete has two primary goals (1) keeping the user from making queries with 

no results and (2) helping them understand the features of the matches of their query during 

refinement.

Structural Guidance—When a user submits an over-specified query (one that has too few 

or no matches), they must return to their query and refine it until they reach a suitable level 

of specification. To help avoid this, we adapt the query construction process based on the 

query the user is constructing. VISAGE directs the user’s query construction towards results 

by providing critical information about possible nodes and their features. We have created 

the first graph-querying autocomplete, which works on node types. We want to limit the 

types a nodes users can add so that their query always has at least one result. This guides the 

user in the direction of queries that are rich in matches and away from over-specification and 

null-results [1].
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We achieve type- or structure-autocomplete by constraining the possible-neighbor options in 

the new node menu. By querying in the background we determine which types of newly 

added nodes and edges will result in matches and which won’t. VISAGE displays this data 

by desaturating the add node button. This way a user can immediately see which types of 

nodes are available to them. In the case of truly massive graphs, background querying for 

node-types may be too slow. In this case, we use first-k-sampling to guide the user. We use 

the first k-results of the current query to determine the feasibility and distribution of 

potential new nodes given the current query. The samples are visualized in the bar graph to 

the right of the node-buttons (Figure 4.1).

Feature Guidance—Graph-autocomplete also works in the feature space. We do this by 

visualizing the distributions of different node-attributes, from a sample of the results, of the 

current query. This approach provides users with detailed information about how the features 

(of their current queries) are distributed. With knowledge of different attributes, users are 

able to better understand how the results fill out the feature space. These data provide a 

visual cue that indicates how a new condition will change the number of results.

We chose to visually encode the feature frequencies in the edges of the feature-tree with 

edge-width and saturation (Figure 5.2). By adding constraints with sparser features (thin, 

light lines in Figure 5.2), users will quickly decrease the number of matches. If users choose 

denser attributes they will constrain their search less, keeping more of the results. The 

feature tree also promotes abstraction in hierarchical attributes (Figure 5.3), because it is 

straightforward to trace from one constraint up to the parent constraint. For example, instead 

of looking only for films from 1993, the user can move up the hierarchy seeking films from 

the 1990’s. Feature-autocomplete gives users the summary feature information needed to 

narrow their search without having to repeatedly go back and forth from query to results.

5. IMPLEMENTATION

VISAGE uses a client-server architecture (Figure 6) that separates the front-end interactive 

visualization (client) from the backend graph matching and storage (server). We have 

designed VISAGE to be independent of its backing graph database. VISAGE fully supports 

Neo4j [19]. Currently, it also partially supports SPARQL, with full support in the near 

future. VISAGE’s web client (Javascript and D3) and server (Python) can run smoothly on 

the same commodity computer (e.g., we developed VISAGE on a machine with Intel 

i5-4670K 3.65GHz CPU and 32GB RAM). Optionally, for larger graphs, the server may be 

run on a separate, more powerful machine.

To fetch results of a user’s query, we convert and parse the visual query into a compact 

format that we pass off to the DB modules which convert the parsed query into the necessary 

languages for each graph database. Once results are returned, we calculate summary 

statistics with the metadata extractor in Figure 6, which are the input for graph-autocomplete 

and represent the results of the current query.
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Parsing A Graph Query

When looking for matches of a query, if the starting node has very few matches in the graph, 

the search space is reduced and fewer comparisons are needed. The effect can be enormous, 

reducing a multiple minute query down to sub-second times. Because the node-constraints 

can vary from completely abstract (like a wildcard) to a single specific node, we have 

designed VISAGE to partition the graph queries into pieces. Our first step is to rank the 

nodes by the number and severity of their constraints. Starred nodes are parsed into 

subqueries first. VISAGE then ranks the remaining nodes by number of constraints. The 

entire parsing can often be completed in a few milliseconds or less.

6. USER STUDY

To evaluate VISAGE’s usability, we conducted a laboratory study to assess how well 

participants could use VISAGE to construct queries on the Rotten Tomatoes movie graph 

discussed earlier. We chose a movie graph, because the concept of films, directors, etc., 

would be familiar to all participants, so that they could focus on VISAGE’s features. We 

asked participants to build queries to find interesting graph patterns derived from prior graph 

mining research [17, 23, 8]. We compared the time taken forming queries between VISAGE 

and Cypher; we chose Cypher for its resemblance to SQL and ease of use. We chose 

Participants were not informed which system, if either, was developed by the examiner. We 

are not able to compare with GRAPHITE [7], as it is not publicly available.

6.0.1 Participants—We recruited 12 participants from our institution through 

advertisements posted to local mailing lists. Their ages ranged from 23 to 41, with an 

average age of 27. 5 participants were female the rest were male. All participants were 

screened for their familiarity with SQL. Participants ranged in querying skills; three had 

prior experience with Cypher. Each study lasted for about 60 minutes, and the participants 

were paid $10 for their time.

6.0.2 Experiment Design—Our study uses a within-subjects design with two main 

conditions for completing tasks: VISAGE and Cypher. The test consisted query tasks which 

were divided into two sections (see the Task section). Every participant completed the first 

section of tasks in one condition, and the second set of tasks in the remaining condition. The 

order of the conditions was counterbalanced. We generated matched sets of tasks, Set A and 

B, each with 5 tasks to complete. The tasks ranged from easy to hard and were 

counterbalanced with each condition, to even out unintended differences in difficulty among 

the tasks. We used two sets of tasks to ensure that participants did not remember their 

solutions between sets.

6.0.3 Tasks—We created the tasks based on an informal survey of interesting patterns from 

common questions people formed when exploring Rotten Tomatoes data and from prior 

graph mining research [17, 23, 8]. The tasks in Task Set A (shown in Figure 7) were:

1. Find films similar to any film from 1993.

2. Find an actor and a director for any drama film.
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3. Find an actor starred in 3 films: romance, comedy, and action.

4. Find 3 similar action films, where one is from the 80’s, one from the 90’s, and 

the last from the 00’s.

5. Find co-directors who made at least three films together, starring the same actor, 

where one of the films was from the 90’s.

The difficulty of each query increases from task 1 through 5. We ranked the difficulty of 

each task based on the amount of Cypher code and number of nodes, edges, and constraints 

needed. The italic values shown above were the elements that differed between the two task 

sets (the order remained the same across both sets). Our hypothesis was that Cypher and 

VISAGE would achieve approximately similar performance for easy queries and VISAGE 

would achieve shorter task completion times for harder queries.

Task completion time was our dependent measure. Task completion time could be affected 

by: (1) Software – VISAGE or Cypher; (2) Task Set – the Task Set A or B; (3) Software 

Order – which software was used first. Using a Latin square design, we created 4 participant 

groups (since all subjects would do both software systems). We randomly and evenly 

assigned the participants to the groups, e.g., one group is (VISAGE + Task Set A) then 
(Cyper + Task Set B).

6.0.4 Procedure—Before the participants were given the tasks, they were provided with 

instructions on the software that they would be using as well as information about the data 

set they would be exploring. For the Cypher querying language, we offered a tutorial for 

starting Cypher tailored to our dataset. For VISAGE we provided an overview of VISAGE’s 

interface, how to construct queries, and how our tool would work. The participants were 

welcome to ask clarifying questions during these introductory periods.

Once demoed we moved on the the first block of tasks, where we instructed the participants 

to work quickly and accurately. They had 5 minutes to perform each task and could only 

move to the next one if they correctly completed the current task or ran out of time. After 

each task, the participant was given the next task’s instruction while the system was reset. 

Each task was timed separately. If a participant failed to finish a task within the allotted 5 

minutes (300 seconds), the experimenter stopped the participant, marked that task as a 

failure, and recorded 300s as the task completion time (to prevent participants from spending 

indefinite amounts of time on tasks).

Once participants had completed the first set of tasks, they were provided the next set. At the 

end participants completed a questionnaire that asked for subjective impressions about each 

software system.

6.1 Results

6.1.1 Quantitative Results—The task completion times were analyzed using a mixed-

model analysis of variance with fixed effects for software, software order, task set, and a 
random effect across participants. This technique is used to analyze within-subject studies 
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and improves over conventional ANOVA, because error-terms are also calculated per-subject 

[18].

We measured the task completion time for the effects over all possible combinations of 

software, software order, and task set. The only statistically significant effect was software, 

suggesting a successful counterbalancing of software order and the equality of the difficulty 

of the two task sets. Figure 8-left demonstrates the average time per task for the study. The 

software effect was significant across all tasks: task 1 (F1,5 = 27.16, p < 0.0004), task 2 (F1,5 

= 49.76, p < 0.0001), task 3 (F1,5 = 33.23, p < 0.0002), task 4 (F1,5 = 25.88, p < 0.0005), 

task 5 (F1,5 = 42.84, p < 0.0002). Participants were significantly faster when constructing 

queries in VISAGE than in Cypher. Only one participant failed to complete task 5 in the 

allotted 5 minutes (using the Cypher software); the rest succeeded in all tasks. This datum is 

partially responsible for the high variance in the task 5 (see Figure 8-left - Task 5). Using 

VISAGE, participants were able to construct task 5 slightly faster than task 4 (see Figure 8-

left). Adding new nodes in VISAGE is faster than specifying feature constraints; task 4 has a 

large number of constraints while task 5 has a large number of nodes and edges. We do not 

see this in Cypher task 4 and 5, because adding new edges, nodes, and constraints all take 

similar amounts of time. Overall, the average difference in task times between VISAGE and 

Cypher was statistically significant (F1,5 = 37.38, p < 0.0005); this represents an average 

speedup of about 2.67× when using VISAGE.

6.1.2 Subjective Results—We measured several aspects of both conditions using 7-point 

Likert scales filled out at the end of the study. Participants felt that VISAGE was better than 

Cypher for all the aspects asked about (see Figure 8-right). The participants enjoyed using 

VISAGE more than a querying language and additionally found that our system was easier 

to learn, easier to use and more likeable overall; although this is a common experimental 

effect, we find the results encouraging. Several participants found that the visualization of 

the query greatly improved the overall completion of the tasks.

6.2 Discussion and Limitations

The results of our user study were positive, both qualitatively and quantitatively. This 

suggests that VISAGE’s visual representation of graph queries using graph autocomplete is 

faster than typed querying languages. We believe that VISAGE achieves these better times 

by: (1) streamlining the process of adding nodes and edges; (2) autocompleting partially-

complete queries, which adaptively guides the user away from null-results; (3) shielding 

users from making typos and mistakes during the construction of their queries.

Adding nodes and edges in traditional querying systems often requires creating a variable 

for them, which must be remembered in order to specify the structure and attributes related 

to it. The user may have to type the name a single node repeatedly in order to specify the 

actual structure and in the case of large queries may confuse the names of nodes. VISAGE’s 

visual representation simplifies this considerably. Typos and mistakes are common when 

writing a long and complicated query by hand. By programmatically generating queries 

based on users’ constructions, VISAGE avoids the delay incurred by typos.
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We observed two general strategies that participants employed when constructing queries: 

(1) entities first, then relationships, and (2) iterative construction. Participants in the first 

group would often add all the entities from the task first, then wire up the relationships. 

Other participants followed a more iterative approach, wherein they would start with a single 

entity and build up from it (reminiscent of a breadth-first search). No statistical significance 

was found in the time taken for each general strategy.

When users construct queries with null-results, a traditional system requires the user to wait 

while the search is performed. During the study two of the users stated that the autocomplete 

helped remind them about the underlying structure of the network, saving time during their 

tasks. We help guide the user away from this case with our graph-autocomplete, so that users 

spend less time debugging queries that do not produce results. Because we sample results for 

graph-autocomplete, VISAGE may be able to retrieve a small sample of the possible results 

in real time, leading to a potentially skewed samples. This limit is dictated by the underlying 

graph database and scales accordingly.

While the results of our evaluation was positive, the need for the participants to build queries 

was created by the tasks; however, in real-world scenarios, such needs would be ad hoc. For 

example, what kind of exploratory query patterns do people create? We plan to study such 

needs, as well as how VISAGE can handle those kinds of tasks, in less controlled situations.

7. RELATED WORK

Graph Visualization and Query Languages

Many tools and techniques have been developed to facilitate discovery in graphs; Herman et 

al. [11] cover much of the initial work in graph visualizations. Static [30] and dynamic [2] 

graph visualizations are quickly growing areas; as well as graph sensemaking [22]. Our 

work extends this body of research by providing an adaptive, visual approach to graph query 

construction and refinement.

Database researchers have proposed graphical query languages to help users specify queries 

against various forms of databases. The seminal work by Zloof [32] introduces the Query By 

Example language (QBE). QBE allows users to formulate queries by filling out relational 

templates, constructing “example queries”, rather than writing traditional SQL queries. 

Other examples include PICASSO [16], which allows users to pose complex queries without 

knowing the details of the underlying database schema, and the concept of dynamic queries 

[1, 26], which allow users to create relational queries with graphical widgets to provide 

visual display of actions. Catarci et al. [5] provide a survey of the body of work focusing on 

relational databases. More recently, researchers proposed graphical query languages for 

XML [6, 20] and RDF [12] databases as well. Our work builds upon much of this previous 

work; however, our focus is on the visual aspect of query construction and refinement as 

well as displaying results without requiring familiarity with a data-model like XML or RDF.

Approaches for Graph Querying

The problem of querying a large graph given a subgraph of interest, also known as subgraph 

matching, has been investigated in several recent works. Tong et al. propose G-Ray [29], 
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which is a best-effort inexact subgraph matching approach that supports node attributes. The 

MAGE algorithm [23] improves G-Ray by exhibiting lower latency, supporting attributed 

edges, wildcards, and multiple attributes. Tian and Patel propose TALE [28], which is an 

index-based method that incorporates the local graph structure around each node into an 

index structure for efficient approximate subgraph matching. Other systems have solved this 

problem, like OntoSeek [9], which utilizes inexact graph matching based on linguistic 

ontologies over a large collection of keywords called WordNet. While we currently utilize 

Neo4j’s graph querying functionality, our approach can very well work with any of the 

advanced techniques in this line of research. Recently Cao et al. introduced g-Miner, an 

interactive tool for graph mining that supports template matching and pattern querying [4]. 

VISAGE bridges querying and pattern matching, by offering multiple levels of abstraction, 

where g-Miner does not.

Visual Graph Querying

A few systems have been proposed for visually querying large graphs. One example is 

GRAPHITE [7], which allows users to visually construct a graph query over categorically 

attributed graphs. It uses approximate subgraph matching and visualizes the results. 

GRAPHITE proved that visual graph querying is possible; however, our focus is on the 

query refinement process (with richer querying possibilities than GRAPHITE, which only 

supports a single categorical attribute per node). More recently, researchers proposed 

VOGUE [3], which is a query processing system with a visual interface that interleaves 

visual query construction and processing. VOGUE exploits GUI latency to prune false 

results and prefetch candidate data graphs through special indexing and query processing 

schemes. Our work differs from this body of work by enabling users to explore the feature 

space with a tree-based view and guiding users as they construct their graph query with 

graph-autocomplete. Previous works on visual graph querying [3, 7, 24], did not focus on 

addressing the interaction and visualization challenges, which is another focus of our work 

here.

Graph Summarization

Another line of research focuses on “summarizing” a given graph. Koutra et al. [17] propose 

VoG, which constructs a vocabulary of subgraph-types like stars and cliques. Dunne and 

Shneiderman [8] present motif simplification, which is a technique for increasing the 

readability of node-link network visualizations by replacing common repeating network 

motifs with easily understandable motif glyphs (e.g. fans and cliques). Schreiber et al. used 

this idea with MAVisto, a tool for the exploration of motifs in biological networks [25]. We 

do not focus on graph summarization in this paper; however, many of the patterns or motifs 

serve as the basis for our user study tasks.

8. CONCLUSION & FUTURE WORK

In this work we presented VISAGE, a system built using recent innovations in graph-

databases to support the visual construction of queries, from abstract structures to highly 

conditioned queries. VISAGE relies on an interaction technique for graphs called graph-
autocomplete that guides users to construct and refine queries, preventing null-results. We 
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hypothesized that visual graph querying with VISAGE would be faster for generating 

queries than the Cypher querying language. We demonstrated this with a twelve-participant, 

within-subject user study. The study showed that VISAGE is significantly faster than 

conventional querying for participants with or without familiarity to Cypher.

VISAGE offers users a visually supported, code-free solution to graph querying that helps 

guide the user towards queries with results. Currently we do not support graph subqueries, 

unions and intersections (of graph results), aggregations, shortest-paths, and edge attributes. 

This work has revealed additional challenges and potential new questions for the 

community. How can inexact or approximate querying be used to aid query construction and 

refinement; and how best to visualize the uncertainty inherent in approximate results [22, 

30]? We hope VISAGE will spur continued interest in visual graph querying.
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Figure 1. 
Top: a VISAGE query seeking three similar action films from the 1980’s along with a result, 

found from the Rotten-Tomatoes movie-similarity graph (an edge connects two movies if 

they are similar). Bottom: the equivalent query written in the Cypher querying language. 

VISAGE’s interactive graph querying approach significantly simplifies the query writing 

process.
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Figure 2. 
VISAGE supports many query refinement approaches like abstract querying (1–3) and 

example-driven querying (4–5). A broad query (1) with only node types and structure, with 

the first resulting match in (2). The Coen Brothers and the film O Brother, Where Art Thou? 
are starred, fixing these nodes. With the nodes starred, only matches with those nodes are 

displayed like (3). Bottom-up querying or query by example starts with an example of a 

known pattern. The known pattern (4) coveys lots of detailed information but is too specific 

to offer any other matches. In (5), Good Will Hunting is abstracted to form a new query 

based off the example (for only films from the 90s).
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Figure 3. 
A screenshot of VISAGE showing an example graph query of films and actors related to 

George Lucas’ films. VISAGE consists of: (1) a query construction area, where users 

construct graph queries by placing nodes and edges; (2) an overview popup window that 

summarizes the desired features (constraints or conditions) of a query node (in green), and 

the features of a selected node in a match (e.g., the film THX 1138 in blue); a results pane, 

which shows a list of the results returned by the query. In this example, a user has specified a 

condition that the film must have a critics’ overview of “Well-rated”. The matches’ layouts 

(general shape) mirror that of the original query.
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Figure 4. 
(1) VISAGE supports conventional text search for finding a node to star. (2) Node controls 

and the add-node menu; the pin button fixes the node’s position in the visualization; the star 

button (available only when results exist) allows users to keep that particular node in future 

results; the magnifying glass opens the node-search menu (at 1) that allows users to search 

for particular nodes. (3) The distribution of each potential neighbor node type is plotted to 

the right of each node-button; neighbors that will lead to over-specification are grayed out.
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Figure 5. 
To investigate the feature space, VISAGE visualizes node features with a tree view. 

Hierarchical node features can be clicked to hide or show levels of the hierarchy (3). The 

edges denote the density of the target feature in the current results. The darker edges in (2) 

mean more results have that attribute value. When a user adds a condition by clicking a node 

it is highlighted in green, as in (3). If the current node is a result or a starred node, that nodes 

attributes will be highlighted in blue.
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Figure 6. 
VISAGE uses a client-server architecture. The client visualizes the query and results. The 

server wraps a graph database, e.g., Neo4j, RDF database; additional databases can be added 

via new parser output modules. The metadata extractor creates summarization statistics for 

autocomplete. VISAGE’s search functionality for finding specific nodes is sped up using 

full-text-search indices.
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Figure 7. 
VISAGE user study tasks. VISAGE queries shown on the left with their corresponding 

multi-line Cypher queries on the right.
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Figure 8. 
Average task completion times and likert scores for VISAGE (green) and Cypher (yellow). 

VISAGE is statistically significantly faster across all tasks. The error bars represent one 

standard deviation.
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