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Fig. 11. Classification accuracy on the GTGraph stream for temporary abrupt
and gradual drift. Upper row: results on different M and K = 4. Bottom row:
results on different K and M = 5000.

we set d as 10, and insert abrupt concept drift in chunk 15
(the total number of chunks is 25) by introducing a signifi-
cant change to f0, and then gradually adjust f0 to continuously
introduce gradual concept drifts to chunks 16 ∼ 18.

In the first group of experiments, we fix the ensemble
size K = 4 and adjust the number of features M with
{1000, 10 000} for impact evaluation. And in the second group
of experiments, the number of features M is fixed to 5000 and
adjust the ensemble size K with {2, 6}.

Fig. 11 reports the classification accuracy (y-axis) with
respect to the chunk ID (x-axis) in GTGraph streams by using
different numbers of features. The results also show that there
are noticeable concept drifting from chunks 14∼19 (marked
by the rectangle boxes). From chunks 14∼15, all four classi-
fiers also experience large performance loss because there is
an abrupt drift when switching to chunk 15. Next from chunks
15∼17, the gradual drifts occur. This experiment implies that
ARC-GS can effectively handle temporary abrupt and gradual
concept drifts in graph streams.

3) Results on Permanent Abrupt Drift: In order to assess the
performance on permanent abrupt concept drifts, we design a
sudden permanent concept drift by combining the GTGraph
stream (50 chunks * 2000 graphs) and the CNS stream (8
chunks * 2000 graphs).

Fig. 12 shows the experimental results on GTGraph + CNS
stream. As expected, there is a decline in chunk 29 when
the temporary drift occurs. When the concept permanently
changes from GTGraph to CNS in chunk 50, all algorithms
experience a sharp drop. However, ARC-GS algorithm recov-
ers much faster than other algorithms. The results validate
ARC-GS is better at handling permanent abrupt drift.

4) Results on Recurrent Abrupt Drift: In this experiment, we
use the DBLP and CNS streams to simulate recurrent concept
drifts. Specifically, we construct a graph stream by sequentially
adding eight chunks of DBLP graphs (each chunk consists of
2000 graphs), following by eight chunks of CNS graphs. The
procedure repeats three times to generate a stream that both
DBLP and CNS concepts recur three times.

Fig. 12. Classification accuracy on the GTGraph+CNS stream for mixed
temporary and permanent abrupt drift (chunk size is 2000). Upper row: results
on different M and K = 4. Bottom row: results on different K and M = 5000.

Fig. 13. Classification accuracy on the GTGraph+CNS stream for recurrent
abrupt drift. Upper row: results on different K with M = 5000. Bottom row:
results on different K with M = 15 000.

Fig. 13 shows the experimental results for recurrent abrupt
drift. The results show that when the concept change from
DBLP to CNS (or from CNS to DBLP), all algorithms will
drop significantly in their performance and then recover in
following chunks. As K increases, gSLU will recover more
slowly. However, GCS-CH will recover much faster and bet-
ter than all other algorithms. This is because the GCS-CH
algorithm assigns much larger weights into the most recent
chunk, so it is better to capture the underlying concept drift.

F. Further Analysis

Results With Respect to Wider Range of Ensemble Size K:
To better understanding the role of K, we experiment K from 2
to 20 with interval 2 in the dataset GTGraph-CNS. The experi-
mental result is reported in Fig. 14. The result in Fig. 14 shows
that when K keeps increasing, gSLU and DICH algorithms
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Fig. 14. Performance change over K in GTGraph-CNS (M = 5000 and
chunk size = 2000).

Fig. 15. Classification accuracy on the GTGraph-CNS (M = 5000 and
K = 4) with different chunk size.

Fig. 16. Classification accuracy and average classification accuracy on
GTGraph-CNS stream (M = 5000 and ensemble size K = 4) with different
hash ratio R.

experience a slight drop rather than an increase in accuracy.
This is because when the ensemble increase, the older clas-
sifiers in the ensemble will affect the algorithm (e.g., gSLU),
so the ability of the algorithm to handle concept drift may
decrease. However, our algorithm ARC-GS remains relatively
stable when K increases, because it assigns larger weights on
the most recent classifier and it is more sensitive in handling
concept drift.

Results With Respect to the Chunk Size: We report the
experimental results in Fig. 15 for different chunk size. The
results show that no matter how to adjust the chunk size, our
algorithm ARC-GS always performs the best.

Results With Respect to the Hash Ratio R: In this experi-
ment, for ARC-GS, we adjust the hash ratio R within range
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6} to evaluate the performance change
in the dataset GTGraph-CNS. Fig. 16 reports our algorithm
performs stable even under different ratio settings.

Results With Respect to Nonparametric Test: To summarize
the comparison of all classifiers over all four datasets with con-
cept drifts, we report a Friedman post-hoc test using Bergman
and Hommel correction [37], [38]. In Table II, each value rep-
resents a raw p-value for each pair of classifiers. A summary
with the average values of each classifier over all datasets is

TABLE II
NONPARAMETRIC TEST: FRIEDMAN Post-Hoc TEST

shown in Table II. From the result of Friedman post-hoc test,
ARC-GS statistically outperforms the best.

VI. CONCLUSION

In this paper, we proposed an adaptive real-time classifi-
cation method for concept-drifting graph streams. We argued
that graph stream classification has three major challenges:
1) increasing graph volumes; 2) expanding feature space; and
3) concept drifting. An effective graph classification model
should tackle these challenges to classify graphs in real-
time with only one-pass of the stream data. Accordingly,
we employed two hashing schemes to speed up the graph
feature extraction, and combined incremental stochastic learn-
ing strategy and chunk level weighting mechanism for graph
stream classification. In particular, we proposed an approx-
imate method for fast graph feature extraction by detecting
cliques from compressed graphs via hashing, which signifi-
cantly improves the efficiency of feature extraction to satisfy
the real-time requirement. A graph feature reduction method
is used to map expanding clique patterns onto corresponding
fixed-size compatible feature spaces via differential hashing,
which can avoid a prescan of graphs to address the one-pass
and “concept drifting” challenges. As a result, the stream
of graphs is converted into feature vectors without addi-
tional parsing such that we can directly adopt a stochastic
learning strategy to train a graph classifier online. A chunk
level weighting mechanism is adopted to build an ensemble
for classifying graph stream with concept drifts. Experiments
and comparisons on real-world and synthetic graph streams
demonstrate that the proposed method outperforms the state-
of-the-art methods in both classification accuracy and learning
efficiency.

REFERENCES

[1] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels
between labeled graphs,” in Proc. ICML, Washington, DC, USA, 2003,
pp. 321–328.

[2] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs,”
in Proc. ICDM, Houston, TX, USA, 2005, pp. 74–81.

[3] P. Mahé and J.-P. Vert, “Graph kernels based on tree patterns for
molecules,” Mach. Learn., vol. 75, no. 1, pp. 3–35, Apr. 2009.

[4] N. Shervashidze and K. M. Borgwardt, “Fast subtree kernels on graphs,”
in Proc. NIPS, Vancouver, BC, Canada, 2009, pp. 1660–1668.

[5] L. Chen and C. Wang, “Continuous subgraph pattern search over certain
and uncertain graph streams,” IEEE Trans. Knowl. Data Eng., vol. 22,
no. 8, pp. 1093–1109, Aug. 2010.

[6] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “Graph
distances in the data-stream model,” SIAM J. Comput., vol. 38, no. 5,
pp. 1709–1727, 2008.

[7] C. C. Aggarwal, Y. Zhao, and P. S. Yu, “On clustering graph streams,”
in Proc. SDM, Columbus, OH, USA, 2010, pp. 478–489.

[8] C. C. Aggarwal, “On classification of graph streams,” in Proc. SDM,
Mesa, AZ, USA, 2011, pp. 652–663.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CYBERNETICS

[9] B. Li, X. Zhu, L. Chi, and C. Zhang, “Nested subtree hash kernels for
large-scale graph classification over streams,” in Proc. ICDM, Brussels,
Belgium, 2012, pp. 399–408.

[10] L. Chi, B. Li, and X. Zhu, “Fast graph stream classification using
discriminative clique hashing,” in Proc. PAKDD, Gold Coast, QLD,
Australia, 2013, pp. 225–236.

[11] M. A. Shrivastava and B. Pant, “Opinion extraction and classification
of real time Facebook status,” Glob. J. Comput. Sci. Technol., vol. 12,
no. 8, pp. 35–40, Apr. 2012.

[12] S. Pan, X. Zhu, C. Zhang, and P. S. Yu, “Graph stream classification
using labeled and unlabeled graphs,” in Proc. ICDE, Brisbane, QLD,
Australia, 2013, pp. 398–409.

[13] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and
K. M. Borgwardt, “Graph kernels,” J. Mach. Learn. Res., vol. 11, no. 2,
pp. 1201–1242, 2010.

[14] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,”
in Proc. ICDM, Maebashi, Japan, 2002, pp. 721–724.

[15] M. M. Gaber, A. B. Zaslavsky, and S. Krishnaswamy, “Mining data
streams: A review,” ACM SIGMOD Rec., vol. 34, no. 2, pp. 18–26,
Jun. 2005.

[16] J. Gama, Knowledge Discovery From Data Streams. Boca Raton, FL,
USA: CRC Press, 2010.

[17] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonsta-
tionary environments: A survey,” IEEE Comput. Intell. Mag., vol. 10,
no. 4, pp. 12–25, Nov. 2015.

[18] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proc. PODS, Madison, WI, USA,
2002, pp. 1–16.

[19] S. Muthukrishnan, “Data streams: Algorithms and applications,” in
Foundations and Trends in Theoretical Computer Science. Hanover, MA,
USA: Now, Aug. 2005.

[20] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proc.
KDD, Boston, MA, USA, 2000, pp. 71–80.

[21] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA)
for large-scale classification,” in Proc. KDD, San Francisco, CA, USA,
2001, pp. 377–382.

[22] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proc. KDD, Washington, DC,
USA, 2003, pp. 226–235.

[23] A. Bifet and R. Gavaldà, “Adaptive XML tree classification on evolv-
ing data streams,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Disc.
Databases, Bled, Slovenia, 2009, pp. 147–162.

[24] D. Brzezinski and M. Piernik, “Structural XML classification in concept
drifting data streams,” New Gener. Comput., vol. 33, no. 4, pp. 345–366,
Jul. 2015.

[25] S. Pan, J. Wu, X. Zhu, and C. Zhang, “Graph ensemble boosting for
imbalanced noisy graph stream classification,” IEEE Trans. Cybern.,
vol. 45, no. 5, pp. 954–968, May 2015.

[26] L. Bottou, Stochastic Learning (Lecture Notes in Computer Science).
2004, pp. 146–168.

[27] Q. Shi et al., “Hash kernels for structured data,” J. Mach. Learn. Res.,
vol. 10, no. 11, pp. 2615–2637, 2009.

[28] S. Gollapudi and R. Panigrahy, “The power of two min-hashes for
similarity search among hierarchical data objects,” in Proc. 27th ACM
SIGMOD SIGACT SIGART Symp. Principles Database Syst., Vancouver,
BC, Canada, 2008, pp. 211–220.

[29] S. Tatikonda and S. Parthasarathy, “Hashing tree-structured data:
Methods and applications,” in Proc. IEEE 26th Int. Conf. Data
Eng. (ICDE), Long Beach, CA, USA, 2010, pp. 429–440.

[30] L. Chi, B. Li, and X. Zhu, “Context-preserving hashing for fast text
classification,” in Proc. SIAM Int. Conf. Data Min., Philadelphia, PA,
USA, 2014, pp. 100–108.

[31] X. Liu, Y. Mu, D. Zhang, B. Lang, and X. Li, “Large-scale unsupervised
hashing with shared structure learning,” IEEE Trans. Cybern., vol. 45,
no. 9, pp. 1811–1822, Sep. 2015.

[32] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy,
“Approximating clique is almost NP-complete (preliminary version),”
in Proc. 32th FOCS, 1991, pp. 2–12.

[33] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of
an undirected graph,” Commun. ACM, vol. 16, no. 9, pp. 575–577,
Sep. 1973.

[34] H. A. Soufiani and E. Airoldi, “Graphlet decomposition of a weighted
network,” in Proc. 15th Int. Conf. Artif. Intell. Stat. (AISTATS), 2012,
pp. 54–63.

[35] A. Tsymbal, “The problem of concept drift: Definitions and related
work,” Dept. Comput. Sci., Trinity College, Univ. at Dublin, Dublin,
Ireland, Tech. Rep. TCD-CS-2004-15, 2004.

[36] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive
model for graph mining,” in Proc. SDM, Toronto, ON, Canada, 2004,
pp. 442–446.

[37] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, no. 1, pp. 1–30, 2006.

[38] B. Calvo and G. S. Rodrigo, “scmamp: Statistical comparison of
multiple algorithms in multiple problems,” R J., vols. 1–8, pp. 108–131,
Aug. 2016.

Lianhua Chi received the dual Ph.D. degrees
in computer science from the University of
Technology Sydney, Broadway, NSW, Australia, and
the Huazhong University of Science and Technology,
Wuhan, China, in 2015.

She is currently a Post-Doctoral Researcher with
IBM Research, Melbourne, VIC, Australia. Her
current research interests include time series data
mining, graph stream data mining, data correlation
analysis, and big data hashing.

Dr. Chi was a recipient of the Best Paper Award
in PAKDD in 2013.

Bin Li received the Ph.D. degree in computer sci-
ence from Fudan University, Shanghai, China, in
2009.

He was a Lecturer with the University of
Technology Sydney, Broadway, NSW, Australia,
and a Research Fellow with Institut TELECOM
SudParis, Évry, France. He is currently a Senior
Research Scientist with Data61 (formerly NICTA),
CSIRO, Eveleigh, NSW, Australia. His current
research interests include stochastic processes and
randomized algorithms in machine learning and their

applications to recommender systems, and smartcity data analytics.

Xingquan Zhu (SM’12) received the Ph.D.
degree in computer science from Fudan University,
Shanghai, China.

He is an Associate Professor with the Department
of Computer and Electrical Engineering and
Computer Science, Florida Atlantic University,
Boca Raton, FL, USA, and a Distinguished Visiting
Professor (Eastern Scholar) with the Shanghai
Institutions of Higher Learning, Shanghai. His cur-
rent research interests include data mining, machine
learning, and computational advertising.

Shirui Pan received the Ph.D. degree in computer
science from the University of Technology Sydney
(UTS), Broadway, NSW, Australia.

He is a Research Associate with the Centre for
Artificial Intelligence, UTS. He has published over
30 research papers in top-tier journals and con-
ferences, including the IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS,
the IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, the IEEE TRANSACTIONS

ON CYBERNETICS, Pattern Recognition, IJCAI,
ICDE, ICDM, SDM, CIKM, and PAKDD. His current research interests
include data mining and machine learning.

Ling Chen received the Ph.D. degree from Nanyang
Technological University, Singapore.

She was a Post-Doctoral Research Fellow with
L3S Research Center, University of Hanover,
Hanover, Germany. She is a Senior Lecturer
with the Centre for Quantum Computation and
Intelligent Systems, University of Technology
Sydney, Broadway, NSW, Australia. Her current
research interests include data mining and machine
learning, social network analysis, and recommender
systems.


