20
21
Chapter 22
SCIENTIFIC DATA MANAGEMENT IN THE CLOUD: A SURVEY OF TECHNOLOGIES, APPROACHES AND CHALLENGES
Sangmi Lee Pallickara and Shrideep Pallickara
Department of Computer Science
Colorado State University, Fort Collins, Colorado, USA

Marlon Pierce
Community Grids Lab
Indiana University, Bloomington, Indiana, USA

1. Introduction
Experimental sciences create vast amounts of data. In astronomy, data produced by the Pan-STARRS project [1, 2] is expected to result in more than a petabyte of images every year. In high-energy physics, the Large Hadron Collider will generate 50 to 100 petabytes of data each year, with about 20 PB of that data being stored and processed on a worldwide federation of national grids linking 100,000 CPUs [3, 4].

Cloud computing is immensely appealing to the scientific community, who increasingly see it as being part of the solution to cope with burgeoning data volumes. Cloud computing enables economies-of-scale in facility design and hardware construction. Groups of users are allowed to host, process, and analyze large volumes of data from various sources. There are several vendors that offer cloud computing platforms; these include Amazon Web Services [5], Google’s App Engine [6], AT&T’s Synaptic Hosting [7], Rackspace [8], GoGrid [9] and AppNexus [10]. These vendors promise seemingly infinite amounts of computing power and storage that can be made available on demand, in a pay-only-for-what-you-use pricing model.

The science community has substantial experience in dealing with data management issues in distributed computing environments. Data Grids [11], which is based on the grid computing paradigm, has provided large-scale scientific data storage with support for data discovery and accesses over the grid network [12, 13, 14, 15]. Similarly, many cyberinfrastructures and gateways provide their own large-scale data management schemes to satisfy domain-specific requirements [16, 17].

Scientific data management in the cloud differs from prior approaches in several aspects [18]. First, cloud computing consolidates computing capabilities and data storage in very large datacenters or economics-driven local datacenters. In conventional high performance computing, scientists share massively parallel super computers. Access to these supercomputing resources is managed by batch queue systems. Computational input and output data are staged back and forth from the computing nodes to the data storage, which is located separately. In cloud computing the data storage and the computing capability are in the same place. This leads to leads to a paradigm shift in many of data processing and analysis.

Second, hosting data in a centralized facility can be a catalyst for data sharing across different scientific domains. An example of multidisciplinary data hosting can be found in the SciDB [19] open source database. SciDB is designed to serve scientists across a variety of disciplines including astronomy, biology, meteorology, oceanography, and physics. This sharing is not only between different fields, but also among scientists from diverse institutions of the same discipline.

Finally, from the perspective of data hosting, cloud computing is inherently more sustainable. In cloud settings data is often replicated to cope with transient and permanent failures in addition to coping with data corruptions caused by the use of commodity hardware. Since data preservation is often a critical aspect in most scientific domains, data management in the cloud is often a far superior alternative to using local storage, which would involve resolving technical problems that include inter alia replication, fault tolerance, and error detection.

This chapter is organized as follows. In section 2 we discuss common characteristics of scientific data processing to help understand the requirements for scientific data management. In section 3 we discuss current data cloud technologies. We describe scientific applications that are adopting data cloud technologies in section 4. We present an analysis of the gaps between current data cloud technologies and scientific data management requirements in section 5. Finally, in section 6 we present our conclusions.
2. Data Management Issues Within Scientific Experiments
Data management in scientific computing involves data capture, curation, and analysis of the datasets. A lot of this data is produced by observational or experimental instruments such as survey telescopes, doppler radars, satellites, and particle accelerators such as the Large Hadron Collider. Collecting large amounts of data from these instruments can occasionally cause problems in the data ingest and transfer phases. Integrating data from diverse data sources has also been a challenge because of the differences in data delivery patterns and also the heterogeneity in data formats. Additionally, data is also produced during the computing phase and during simulation runs. Furthermore, in addition to the experimental data (raw, derived and recombined), any results and publications produced because of these experiments are also collected and managed as part of the scientific data [20].

Data analysis and simulation often involve visualization. The collected data is in general stored prior to being accessed by the data analysis or visualization process. The curation process involves efficient information extraction besides data organization including indexing and replication. A related consideration is the long-term preservation of the collected data.

Different stages of scientific data processing execute not only sequentially, but also recursively and interactively with other stages during the scientific experiments. Data processing often involves dynamic sharing between scientists or groups. For example, Unidata publishes atmospheric observational data to the public [21]; and in the biotechnology domain NCBI [22] publishes information that includes gene sequences and chemical structures besides providing a library for biomedical articles [23, 24, 25].

3. Data Clouds: Emerging Technologies
Peta-scale datasets pose new challenges. Here, the file system has to be able to manage billions of files some of which may themselves be a few terabytes long. To cope with this a synthesis of database systems and file systems has been proposed [26]; here, the file hierarchy would be replaced with a database cataloging various attributes of each file.

The Map-Reduce [27] programming model by Google enables concurrent processing of a voluminous dataset on a large number of machines. Computations and the data they operate on are collocated on the same machine. Thus a computation only needs to perform local disk I/O to access its input data. Map-Reduce can also be thought of as an instance of the SPMD model in parallel computing.

The Google File System (GFS) [28] fits in rather nicely with the Map-Reduce programming model. GFS disperses a large file onto a set of machines each with its own commodity hard drives: thus, portions of a file reside on multiple machines, which is where Map-Reduce computations would be pushed during subsequent processing. To account for failures that occur fairly often in settings involving commodity components, GFS replicates each file (the default is 3). Failures are assumed to be permanent, and once the system detects a failure it works to ensure that portions of files that were hosted on the failed machine are replicated elsewhere (using copies from other machines) to ensure that the replication levels for the affected files are preserved.

To provide database-like access to the data stored in GFS, Google developed a distributed data store, BigTable [29]. BigTable provides a multi-dimensional map sorted by {row, column, timestamp}. Files are clustered as tablets that have a size of 100 ~ 200 MB, and BigTable manages more than a few Giga tablets. Google’s implementation is available to the public through the Google Application Engine [6]. Google also provides a data analysis infrastructure, Sawzall [30], which makes effective use of large computing clusters with large datasets. Sawzall allows users to specify execution instructions through statements and expressions that are borrowed from C, Java or Pascal. Sawzall then converts these instructions into a program that can run on Google’s highly parallel cluster.

Google’s efforts have inspired several open source projects such as Hadoop [31] and several derivative projects including HBase [32], Hypertable [33] and Hive [34]. Hadoop provides Map-Reduce programming environment on top of the Hadoop distributed file system (HDFS). HBase and Hypertable harness Hadoop to implement a distributed store that mirrors the software design of Google’s BigTable. Apache’s Hive [34] is a data warehouse infrastructure, which allows SQL-like ad hoc querying of data stored in HDFS. Zookeeper [35] is a high-performance coordination service for distributed applications.

Cassandra [36], developed by Facebook and Yahoo, provides a distributed column store for Internet scale data management. Cassandra focuses on fault tolerance to achieve an “always writable” feature, which is critical for several web-based software. Pig [37] is a platform for analyzing large datasets. Pig is both a high-level data-flow language and execution framework for parallel computation. Pig automatically translates user queries into efficient parallel evaluation plans, and then orchestrates their execution on a Hadoop cluster. Pig utilizes the Pig Latin language, developed by Yahoo, which combines high-level declarative querying in the spirit of SQL, and low-level, procedural programming, MapReduce.

Similarly, Microsoft provides its own software stack and computing facilities to the DataCloud clients. Azure [38] is a large-scale distributed storage system in this software stack. SQL Azure [39] provides a distributed key-value store and its interface extends standard SQL. Microsoft uses the dataflow graph based processing model called Dryad [40] that is designed for Windows based cloud clusters. DryadLINQ [41, 42] exploits LINQ (Language Integrated Query) to provide a hybrid of declarative and imperative programming. Any LINQ-enabled programming language such as C#, VB, and SQL can be used for distributed computation with DryadLINQ. DryadLINQ built on top on Dryad, provides a sequential data analysis language. The DryadLINQ system transparently translates the data-parallel portions of the program into a distributed execution plan, which is then passed to the Dryad execution platform. Objects in DryadLINQ datasets can be of any .NET type; this makes it easy to work with datasets such as image patches, vectors, and matrices.

In contrast to Google and Microsoft, Amazon web services [5] provides a much lower level of computing and data storage infrastructure. Additionally, an Elastic Map-Reduce web service [43] based on Hadoop is also provided. Users can run their own virtual cluster with specific batch processing such as PBS [44], Open MPI [45] or Condor [46]. Similarly, several commercial database management systems are available on the EC2 cluster including, IBM DB2 [47], Microsoft SQL Server [48], and Oracle Database 11g [49]. Users can access storage services, such as Simple Storage Service (S3) [50] and Elastic Block Service (EBS) [51]. In S3 users store 1 byte ~ 5 GB objects which are accessed through web service interface. EBS provides a much larger storage of 1GB ~ 1TB and this block is mounted on a user’s instance. Amazon provides a web service interface to simple database functions such as indexing and querying with SimpleDB [52]. Recently, Amazon introduced a more full-featured SQL like database instances, Relational Database Service (RDS) [53].

Table 1 below summarizes the various data cloud technologies that we have discussed so far.

Table 1: Summarizing the data cloud technologies
	Vendors
	Execution Engine
	Distributed data storage
(unstructured)
	Distributed data storage
(Structured)
	High-level data analysis

	Google
	Google Map-reduce
	Google File System(GFS)
	BigTable
	Sawsall

	Microsoft
	Dryad
	Azure,
Cosmos
	SQL Azure
	DryadLINQ

	Apache
	Hadoop Map-reduce
	Hadoop
Distributed File System (HDFS)
	HBase
Hypertable (Zvents)
	Hive,
Pig Latin, and Pig

	Amazon
	Elastic Compute Cloud, Elastic MapReduce,
	Simple
Storage Service (S3),
Elastic Block Storage (EBS)
	Dynamo,
SimpleDB,
Relational
Database
Service (RDS)
	

	Facebook /Yahoo
	
	
	PNUTS,
Cassandra
	Pig, Hive

	Other
Efforts
	WheelFS, Synaptic Hosting, AppNexus, GoGrid, Rackspace
	Synaptic Storage
	
	

Many of the technologies enabling the data cloud have been investigated in recent distributed data management projects. The Boxwood project [54] from Microsoft provides a distributed data management system which provides distributed locking, clustering, and storage of data based on B-trees. The Boxwood project aims to provide an infrastructure for building high-level services such as file systems or databases. In the domain of structured peer-to-peer systems, several distributed hash table (DHT) based projects have dealt with similar problems of providing distributed storage or higher-level services over wide area networks. These DHT-based projects include CAN [55], Chord [56], Tapestry [57], and Pastry [58]. In addition, several database vendors have developed parallel databases that can store large volumes of data. Oracle’s Real Application Cluster database [59] uses shared disks to store data and a distributed lock manager. IBM’s DB2 Parallel Edition [60] is based on the shared-nothing architecture [61] similar to BigTable. Each DB2 server is responsible for a subset of the rows in a table that it stores in a local relational database. These approaches provide a complete relational model with transactions.

4. Case Studies: Harnessing the Data Cloud for Scientific Data Management
The past decade has seen a new set of challenges emerge in the scientific computing area. Data volumes underpin several of these challenges. It is very common for domain scientists to work with datasets in the order of tends of terabytes. By the same token, it is not uncommon for data volumes to be in the order of petabytes. Problems stem from the fact that the access times and transfer rates for commodity hard drives have not kept pace with improvements in their capacities. Some of this stems from the electro-mechanical nature of these disk drives.

Problems are further exacerbated by the fact that the concomitant processing for these datasets are also becoming computationally intensive. For a set of N data points the processing complexity could be super-linear. The data processing can also entail multiple accesses to the underlying datasets. There are several scientific applications that are adopting data cloud technologies to cope with their data-intensive computing challenges.

4.1 Pan-STARRS Data with GrayWulf
The Pan-STARRS project [1, 2] is a large astronomical survey. The project will use a special telescope in Hawaii with a 1.4 gigapixel camera to sample the sky over a period of four years. The large field of view and relatively short exposures will enable the telescope to cover three quarters of the sky 4 times per year in 5 optical colors. This will result in more than a petabyte of images per year. The images will then be processed through an image segmentation pipeline that will identify individual detections, at the rate of 100 million detections per night. These detections will be associated with physical objects in the sky and loaded into the project’s database for further analysis and processing. It is expected that the database will contain over 5 billion objects and well over 100 billion detections. The projected size of the database is 30 terabytes by the end of the first year, growing to 80 terabytes by the end of year 4.

As a part of an effort for better analysis of the data produced by Pan-STARRS, astronomers at Johns Hopkins University are partnering with Microsoft External Research to develop a set of software services and design principles known as GrayWulf [62, 63], which is based on the use of commodity hardware, Windows HPC Server 2008, and Microsoft SQL Server 2008. GrayWulf is an extension of the Beowulf cluster and provides access to the cloud from a user’s desktop.

GrayWulf provides a shared queryable data store for users who perform analyses on the shared database. For achieving scalability, the shared database is partitioned and layered hierarchically. The lower data layer contains vertical partitions of the tables and includes three types of tables: Detections, Objects, and Metadata. Detection rows correspond to astronomical sources detected in either single or stacked images. Object rows correspond to unique astronomical sources and summarize statistics from both single and stack detections that are stored in different sets of columns respectively. Metadata refers mainly to telescope and image information. In general, this partition of data is associated with a specific portion of the sky. On top of the lower level data store, the loader/merger servers ingest new detections into the database’s daily base.

Each user gets their own database (MyDB) on the servers to store intermediate results. Users have full control over their own MyDBs. Data may be uploaded to or downloaded from a MyDB and tables can be shared with other users: this creates a collaborative environment to share results.

GrayWulf uses workflows for several data analysis actions. The data valet workflow infrastructure includes a set of services for workflow visual composition, automatic provenance capture, scheduling, monitoring, and fault handling. Besides the Pan-STARR project, other projects [64, 65] have managed their large datasets with GrayWulf.

4.2 GEON workflow with the CluE cluster
The San Diego Super Conputing Center (SDSC) [66] established its Data Central site, which hosts 27PB of data and more than 100 specific databases. In 2009, SDSC started investigation on the hosting extremely large data sets on the Academic Cluster Computing Initiative (ACCI) [67, 68] cluster which is a joint effort by IBM/Google. The research will focus on using the data-parallel GEON LiDAR Workflow application [69].

4.3 SciDB
SciDB [19] was initiated in two successive Extremely Large Databases (XLDB) [70, 71] workshops that were organized in order to address the challenge of designing databases that can support the complexity and scale involved in scientific applications. Data storage and computation scale equally in SciDB. The data storage in SciDB can scale up to a few petabytes. Users can access a 10,000-node cloud using their laptop to process (a subset of) the dataset. Reported use cases of SciDB include domains such as optical astronomy, radio astronomy, earth remote sensing, environmental observation and modeling, and seismology [19].

SciDB incorporates support for arrays and vectors. These data types come with several built-in optimized operators, which can be categorized as structural or content-dependent. As the name suggests, structural operators operate on the structure of the array independent of the data. Examples of structural operators include Subsample and Reshape. The Subsample operator takes as its input an array A and a predicate specified on the dimensions of A. The operator then generates a new array with the same number of dimensions as A, but where the dimension values satisfy the specified predicate (e.g., every 10th value of the dimension). Reshape is a more advanced structural operator. Reshape can convert an array to a new one with a different number of dimensions possibly with new dimension names, but the same number of cells. Content-dependent operators are those whose result depends on the data that is stored in the input array. Filter is one such operator, which takes as input an array A and a predicate P over the data values that are stored in the cells of A and returns an array with the same dimensions as A.

Additionally, SciDB supports uncertain data; here, “uncertain x” for any data type x uses two values. This feature is particularly useful in computing the result of a location calculation for observed objects commonly used in astronomy and GIS databases, which may contain some approximation errors due to hardware calibration.

SciDB places a special emphasis on the management of provenance for scientific data. Most data is expected to be fed to SciDB from input sources such as scientific measurement devices or sensors. Due to the large volumes of data, the data needs to be written into disk buckets that will contain rectangular chunks of the array. The R-Tree data structure is used to keep track of the location and contents of these buckets.

4.4 Astrophysical Data Analysis with Pig/Hadoop
Loebman et al. [72] have studied the emerging data management needs of the “N-body Shop” group, which specializes in the development and utilization of large-scale simulations specifically, “N-body tree codes” [73]. The objective of these simulations is to investigate the formation and evolution of large-scale structures in the universe.

The University of Washington’s N-body Shop is representative of the current state-of-art in astrophysical cosmological simulation. In 2008, the N-body Shop was the 10th largest consumer of NSF Teragrid time, using 7.5 million CPU hours and generated 50 terabytes of raw data, with an additional 25 terabytes of post-processing information [74].

The N-body Shop has tried different approaches to solve issues in the management of voluminous datasets generated during the simulation. The efforts focused on improving the scalability in the RAM and I/O bandwidth. TIPSY [75] is one of the popular toolkits in this domain and it includes several scripts written in interpreted languages such as Python, Perl, or Interactive Data Language (IDL) [76]. A trait common to these tools is that they operate in main memory. In the astrophysical community, Ntropy [77, 78], a parallel library for the analysis of massive particle datasets has been harnessed to cope with the distributed memory needs. DBMSs and frameworks like Hadoop and Dryad offer similar scalability as application-specific libraries in terms of utilizing distributed memory. However, researchers benefit significantly from declarative languages built on top of these frameworks, such as Pig Latin and DryadLINQ.

Loebman et al’s work [72] has evaluated the performance of data analysis queries between DBMSs and Hadoop/Pig environments. For DBMS, this evaluation partitioned the data via an optimization process. For Hadoop/Pig, the data partitioning was done manually. In the experiments, for larger number of nodes, Hadoop/Pig showed shorter response times for the data analysis queries.

Similarly, Cary et al. [79] studied the applicability of MapReduce to spatial data processing workloads and validated the excellent scalability of MapReduce in that domain. Palankar et al. [80] recently evaluated Amazon S3 as a feasible and cost effective alternative for hosting scientific dataset, particularly those produced by large community collaborations such as LSST [81].

4.5 Public Data Hosting by Amazon Web Services
Amazon Web Services (AWS) hosts Public Data Sets [82] in their centralized repository of public data sets that can be easily integrated with AWS cloud-based applications. Currently, users can access various scientific datasets such as DNA sequences from GenBank, human genome data, influenza virus including updated Swine Flu sequences published by NCBI, Sloan Digital Sky Survey DR6 subset, and daily global weather measurements (1929-2009). Users can create their own Elastic Block Service (EBS) volume with a snapshot of the selected dataset and access, modify and perform computations on their virtual machine instances.

5. A Gap Analysis of Data Cloud Capabilities
In this section we present an analysis of how current capabilities within the data cloud fall short of the current and future needs of scientific data management and processing. In some cases, existing systems have come up with ad hoc solutions to address the shortcomings while in others a lot of research still needs to be done.
5.1 The Impedance Mismatch
Database researchers have been dealing with impedance mismatch [26], which refers to the mismatch between the programming model and the database capabilities. Data cloud technologies also lag in their inability to match the functionalities required by the scientific application. For example, most of the current data cloud implementations do not support N-dimensional arrays as core data types in their computing model. This issue has been addressed in the SciDB project [19] by providing a data structure of arrays and vectors along with a set of operators. Indexing schemes based on the appropriate data types for the scientific data objects are another feature that is currently lacking in data cloud technologies. These can cause significant performance issues for scientific data management.

5.2 Fault Tolerance
The cloud computing environment is in general built using affordable, commodity hardware; as a result, failures are not uncommon in these settings. The probability of a failure occurring during a long-running data analysis task is thus relatively high. For example, Google reports an average 1.2 failures per analysis job [83]. Fast failure detections and recovery schemes will provide a more reliable data analysis environment for scientific users.

 5.3 Scientific Data Format and Analysis Tools
Discovering a sub-array for a computing module is a critical task for scientific applications. Scientific data arrays are often stored as files that are based on scientific file formats such as HDF [84], NetCDF [85], and FITS [86]. These file formats provide attributes for these files, which in turn give clues to discover the relevant sub-array.

Scientific applications open files to check their attributes. To achieve better performance, scientists often encode key attributes into the file system hierarchy. This set of strings represents not only the path to the file in the file system, but also provides useful filtering functionality to assist the data discovery process. In these settings the users discover data in two steps: (1) the user searches the files relevant to the sub-array by means of the information encoded in the file path. (2) then the application scans the file(s) and searches the right sub-array.

However, as the file system grows to billions of files with petabytes of data volumes, scientific data needs more information to identify and describe itself. Similarly, more database-like features are required to handle files and the information about them. Many scientific data management systems [16, 17] have addressed this need for metadata -- information about the data. As a part of the scientific data management system, the metadata of the data products are stored and managed in a conventional database system. This metadata is generally stored separate from the actual datasets and contains a logical or physical link to the data file.

BigTable like data cloud storage provides characteristics of a distributed file system and databases with parallel data discovery and processing. However, to benefit from this technology, scientific users incur an overhead similar to the one in current scientific data management systems: extracting attributes, storing attributes in the table, and generating queries for them. In general, many of these steps are similar across applications if they use the same data formats. For scientific applications that share the same data format, many of these steps will overlap. Therefore, predefined data types and associated querying mechanism would be a useful technology for scientific users and developers.
5.4 Integration With the Object Oriented Programming Model
Integrating database systems with the object oriented programming model can be counted as one of the significant advances in database technology. There are many object-oriented databases that treat any data type as an encapsulated type that can be stored as a value in the field of a record [87, 88]. This approach virtually resolves the problem of the lack of data types in database-style systems. This also provides an easy-to-use interface for the programming environment. Current data cloud systems do not adequately address whether their approaches are a natural fit for the object-oriented programming model.

5.5 Working With Legacy Software
A closer look at scientific software reveals that computing or simulation components in many of the applications rely on conventional file systems. Therefore, file path is widely used as an input parameter for executables. Likewise, many of the script files are dependent on the file system. A new method is required which can transform the software interface from one that is file system based to one that is data cloud compatible.

Finally, visualization tools require support for data from the data cloud. Most of the vendors of data clouds develop their applications based on Web browser technology. However, visualization tools are widely used in the scientific community, because general-purpose Web browsers cannot satisfy specific requirements such as 3D graphical rendering, and support for scientific data formats. To provide active access to the data stored in the data cloud, efficient mechanisms to interact with the visualization tools is required.

5.6 Real-time Data
One of the distinctive characteristics in scientific data management is the variety of data sources. Modern sensors and digitized experimental equipments inject the data directly into the data storage. This real-time data often arrives at the storage as streaming data. Stream data processing differs from conventional data processing performed in data cloud implementations, such as crawled web pages, or personal information.

For example, Unidata [21] provides data collections from observational data sources for meteorology research and weather forecasting. Satellite data is provided every hour with various resolutions. Every day around 140,000 wind and temperature observations are delivered from around 4000 aircrafts. Also, the data from 152 NexRed Doppler radar stations are collected every 5, 6, or 10 minutes. Some of this data must race to be delivered to the simulation component for emergency weather event such as a tornado or hurricane. Efficient data access to real-time data would enable real-time data mining and eventually improve the overall performance of computing significantly.

5.7 Programmable Interfaces to Performance Optimizations
Data cloud promises scalability for scientific data management. Scalability is a critical requirement for data management with continually increasing data volumes. However, many scientific research projects also require reasonably low latency to satisfy the on-demand access and computing requirements. Google Earth stores preprocessed imagery (approximately 70 terabytes) on their disk space [29]. These imageries are indexed into a relatively small (~500GB) table. This table must serve tens of thousands of queries per second per data center with low latency. Therefore, this table is hosted across hundreds of tablet servers and contains in-memory column families.

As we see in Google Earth’s example, designing well performing data systems is not trivial with data cloud implementations. Unlike conventional database systems that provide a built-in cache, replication scheme, or optimizing schemes, data cloud implementations require programmers and system designers to be involved in the process of performance optimization. Programmable interfaces to performance optimizations is needed.

5. 8 Distributed Database Issues
Data clouds share many of the issues from distributed database systems. This includes fault tolerance, conflict management, distributed lock, and data integrity. Fault tolerance is critical for high-throughput computing, which can involve processing that can take up to several days to a few weeks to complete a job. Data integrity is essential to ensure the accuracy of the result. Furthermore, data assurance is required for data that is archived for the long term.

5. 9 Security and Privacy
Scientific users require security and privacy to access their personal data products. Users require secure access to the data for discovery, browsing and computing. Therefore, sensitive data may be encrypted prior to being uploaded to the data cloud storage. To avoid unauthorized access to the sensitive data, any application running in the cloud should not be allowed to directly decrypt the data. However, to decrypt the dataset, moving entire (or large part of) dataset back and forth from the data cloud storage is a very bandwidth/computing intensive task. Thus, [89] suggests that a data analysis system that can operate directly on encrypted data [90, 91, 92, 93, 94] will improve the performance significantly.

6. Conclusions
Cloud computing offers obvious advantages, such as co-locating data with computations and an economy of scale in hosting the services. While these platforms obviously perform very well for their current intended use in search engines or elastic hosting of commercial Web sites, their role in scientific computing is still evolving. In some scientific analysis scenarios, the data needs to be close to the experiment. In other cases, the nodes need to be tightly integrated with a very low latency, while in some cases a high I/O bandwidth is required.

There has been a strong trend to move scientific data to the cloud. We expect this trend to continue and accelerate in the future. As more and more systems start using the data cloud we expect that the issues outlined in the preceding section will become increasingly important, and also be an area where there will be a good deal of research activity.

[bookmark: _Ref101794151]References 		
1. Pan-STARRS project, http://pan-starrs.ifa.hawaii.edu/public/ visited on Feb, 20, 2010
2. R. Jedicke, E. A. Magnier, N. Kaiser, and K. C. Chambers, “The Next Decade Of Solar System Discovery With Pan-STARRS,” In the proceedings of IAU Symposium 236. 2006
3. Large Hadron Collider project, http://public.web.cern.ch/public/en/LHC/LHC-en.html visited on Feb, 20,2010
4. Massimo Lammana, “Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,” In the Proceedings of the 9th international Workshop on Advanced Computing and Analysis Techniques in Physics Research, Vol. 534, Issues 1-2, pp. 1-6, Nov. 2004
5. Amazon Web Services, http://aws.amazon.com/ visited on Feb, 20, 2010
6. Google App Engine, http://code.google.com/appengine/ visited on Feb, 20, 2010
7. AT&T Synaptic Hosting, http://www.business.att.com/enterprise/Family/application-hosting-enterprise/synaptic-hosting-enterprise/ visited on Feb, 20, 2010
8. Rackspace, http://www.rackspace.com/index.php visited on Feb, 20, 2010
9. GoGrid, http://www.gogrid.com visited on Feb, 20, 2010
10. AppNexus. http://www.appnexus.com/ visited on Feb, 20, 2010
[bookmark: DG1]11. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, “The Data Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientific Datasets,” Journal of Network and Computer Applications, 23:187-200, 2001
12. Gurmeet Singh, Shishir Bharathi,Ann Chervenak, Ewa Deelman, Carl Kesselman, Mary Manohar, Sonal Patil, and Laura Pearlman,” A Metadata Catalog Service for Data Intensive Applications,” IEEE, ACM, Super Computing the international conference for High Performance Computing, Networking, Storage and Analysis, 2003
13. The Globus toolkit,”Data Replication Service,” http://www-unix.globus.org/toolkit/docs/4.0/techpreview/datarep/ visited Feb, 20, 2010
14. Moore, R.W., Jagatheesan, A., Rajasekar, A., Wan, M. and Schroeder, W.,” Data Grid Management Systems,” Proceedings of the 21st IEEE/NASA Conference on Mass Storage Systems and Technologies (MSST) , April 13-16, 2004, College Park, Maryland, USA
15. M. Antonioletti, A. Krause, N. W. Paton, A. Eisenberg, S. Laws, S. Malaika, J. Melton and D. Pearson. The WS-DAI Family of Specifications for Web Service Data Access and Integration. ACM SIGMOD Record, Vol 35, No 1, pp48-55, 2006.
16. Jun Peng and Kincho H. Law, “Reference NEESgrid Data Model,” Technical Report NEESgrid-2004-40
17. Beth Plale, Dennis Gannon, Jay Alameda, Bob Wilhelmson, Shawn Hampton, Al Rossi, and Kelvin Droegemeier Active Management of Scientific Data IEEE Internet Computing special issue on Internet Access to Scientific Data, Vol. 9, No. 1, Jan/Feb 2005, pp. 27-34
18. Dennins Gannon, and Dan Reed, “Parallelism and the Cloud,” The fourth paradigm: Data-intensive scientific discovery, Edited by Tony Hey, Stewart Hensley, and Kristin Tolle, ISBN-10:0982544200, 2009, Microsoft Research
19. SciDB, http://scidb.org/ visited on Feb, 20, 2010
20. Jim Gray, “Jim Gray on eScience: a transformed scientific method,” The fourth paradigm: Data-intensive scientific discovery, Edited by Tony Hey, Stewart Hensley, and Kristin Tolle, ISBN-10:0982544200, 2009, Microsoft Research
21. Unidata, http://www.unidata.ucar.edu/ visited on Feb, 20, 2010
22. NCBI, http://www.ncbi.nlm.nih.gov/guide/ visited on Feb, 20, 2010
23. GenBank, http://www.ncbi.nlm.nih.gov/Genbank/ visited on Feb, 20, 2010
24. PubCam, http://pubchem.ncbi.nlm.nih.gov/ visited on Feb, 20, 2010
25. PubMed, http://www.ncbi.nlm.nih.gov/pubmed/ visited on Feb, 20, 2010
26. Jim Gray; David T. Liu; Maria A. Nieto-Santisteban; Alexander S. Szalay; Gerd Heber; David DeWitt, “Scientific Data Management in the Coming Decade,” SIGMOD Record, Vol.34, No.4, Dec. 2005
27. Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” OSDI'04: Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, December, 2004.
28. Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung, “The Google File System,” appeared in 19th ACM Symposium on Operating Systems Principles, Lake George, NY, October, 2003
29. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber , “Bigtable: A Distributed Storage System for Structured Data,” OSDI'06: Seventh Symposium on Operating System Design and Implementation, Seattle, WA, November, 2006.
30. Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan, “Interpreting the Data: Parallel Analysis with Sawzall,” Scientific Programming Journal Special Issues on Grids and Worldwide Computing Programming Models and Infrastructure 13:4, pp. 227-298
31. Hadoop, http://hadoop.apache.org/core/
32. HBase, http://hadoop.apache.org/hbase/
33. HyperTable, http://www.hypertable.org/
34. Hive, http://hadoop.apache.org/hive/
35. Zookeeper, http://wiki.apache.org/hadoop/ZooKeeper. Accessed on February 20, 2010
36. Avinash Lakshman, Prashant Malik, Karthik Ranganathan, “Cassandra, structured storage system over a P2P network,” presentation, SIGMOD 2008
37. C. Olston, B. Reed, U. Srivastava, R. Kumar and A. Tomkins, “Pig Latin: A Not-So-Foreign Language for Data Processing,” ACM SIGMOD 2008 International Conference on Management of Data, Vancouver, Canada, June 2008
38. Microsoft, Windows Azure, http://www.microsoft.com/windowsazure/ visited Feb, 20, 2010
39. Microsoft, SQL Azure, http://www.microsoft.com/windowsazure/sqlazure/ visited Feb, 20, 2010
40. Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrel, and Dennis Fetterly, “ Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks,” In the proceedings of European Conference on Computer Systems (EuroSys), Lisbon, Portugal, March 21 – 23, 2007
41. Yuan Yu, Pradeep Kumar Gunda, and Michael Isard, “Distributed Aggregation for Data-Parallel Computing: Interfaces and Implementations,” In the proceedings of the Symposium on Operating Systems Principles (SOSP), October 2009
42. Michael Isard, and Yuan Yu, “Distributed Data-Parallel Computing Using a High-Level Programming Language,” In the proceedings of the International Conference on Management of Data (SIGMOD), July 2009
43. Amazon Elastic MapReduce, http://aws.amazon.com/elasticmapreduce/. Accessed on February 20, 2010
44. OpenPBS, http://www.pbsgridworks.com. Accessed on February 20, 2010
45. OpenMPI, http://www.open-mpi.org/ . Accessed on February 20, 2010
46. Douglas Thain, Todd Tannenbaum, and Miron Livny, “Distributed Computing in Practice: The Condor Experience,” Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4. Pages 323-356, February-April, 2005
47. IBM DB2, http://www-01.ibm.com/software/data/db2/
48. Microsoft SQL, http://www.microsoft.com/everybodysbusiness/ en/us/products/sql-server-2008.aspx?CR_CC=100193181&WT.srch= 1&WT.mc_id=Search&CR_SCC=100193181
49. Orale Database 11g, http://www.oracledatabase11g.com/
50. Amazon Simple Storage Service, http://aws.amazon.com/s3/
51. Amazon Elastic Block Storage, http://aws.amazon.com/ebs/
52. Amazon SimpleDB, http://aws.amazon.com/simpledb/
53. Amazon Relational Database Service, http://aws.amazon.com/rds/
54. John MacCormick; Nick Murphy; Marc Najork; Chandramohan A. Thekkath; Lidong Zhou, “Boxwood: Abstractions as the Foundation for Storage Infrastructure,” Proceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI 2004), San Francisco, CA, USA, December 2004, pages 105-120.
55. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. “A scalable content-addressable network,” In Proceedings of SIGCOMM (Aug.2001). pp. 161 – 172
56. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., and Balakrishnan, H., “Chord: A scalable peer0to-peer lookup service for Internet applications,” In Proceedings of SIGCOMM (Aug. 2001), pp. 149-160
57. Zhao, B. Y., Kubiatowicz, J., and Joseph, A. D., “Tapestry: An infrastructure for fault-tolerant wide-area location and routing.” Technical report UCB/CSD-01-1141. CS Division, UC Berkeley, Apr. 2001
58. Rowstron, A., and Drushel, P., “Pastry: Scalable, distributed object location and routing for large scale peer-to-peer systems,” In Proceedings of Middleware 2001 (Nov. 2001), pp. 329-350
59. Oracle.com http://www.oracle.com/technology/products/database/ clustering/index.html. Product page
60. Baru, C. K., Fecteau, G., Goyal, A., Hsiao, H., Jhingran, A., Padmanabhan, S., Copeland,G. P., and Wilson, W. G., “DB2 parrel edition,” IBM Systems Journal 34, 2 (1995), 292-322
61. Michael Stonebraker, “The Case for Shared Nothing Architecture,” In Database Engineering, Vol. 9, No. 1 1986
62. Alexander Szalay, Gordon Bell, Jan Vandenberg, Alainna Wonders, Randal Burns, Dan Fay, Jim Heasley, Tony Hey, Maria Nieto-SantiSteban, Ani Thakar, Catharine van Ingen, and Richard Wilton, “GrayWulf: Scalable Clustered Architecture for Data Intensive Computing,” In the Proceedings of the 42nd Hawaii International Conference on System Science, 2009
63. Yogesh Simmhan, Roger Barge, Catharine van Ingen, Maria Nieto-Santisteban, Lazslo Dobos, Nolan Li, Michael Shipway, Alexander S. Szalay, S ue Werner, and Jim Heasley, “GrayWulf: Scalable Software Architecture for Data Intensive Computing,” In the Proceedings of the 42nd Hawaii International Conference on System Science, 2009
64. Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, G. Eyink and A. Szalay, “A public turbulence database and applications to study Lagrangian evolution of velocity increments in turbulence”, submitted to J. Comp. Phys, 2008.
65. T. Budavari,T., T. Malik, A.S. Szalay, A. Thakar, J. Gray, “SkyQuery – a Prototype Distributed Query Web Service for the Virtual Observatory”, Proc. ADASS XII, ASP Conference Series, eds: H.Payne, R.I. Jedrzejewski and R.N.Hook, 295, 31, 2003.
66. San Diego Supercomputing Center, http://www.sdsc.edu/
67. The academic cluster computing initiative (ACCI), Error! Hyperlink reference not valid.
68. San Diego Supercomputing Center Begins Cloud Computing Research Using the Google-IBM CluE Cluster, http://www.sdsc.edu/News%20Items/ PR021309_clue.html, visited on Feb, 20, 2010
69. Jaeger-Frank, E., C. J. Crosby, A. Memon, V. Nandigam, J. Conner, J.R. Arrowsmith, I. Altintas, and C. Baru, “A Domain Independent Three Tier Architecture Applied to LiDAR Processing and Monitoring,” In the Special Issue of the Scientific Programming Journal devoted to WORKS06 and WSES06, December, 2006
70. http://www.conf.slac.stanford.edu/xldb07/. Accessed on February 20, 2010
71. http://www-conf.slac.stanford.edu/xldb08/. Accessed on February 20, 2010
72. Sara Loebman, Dylan Nunley, YongChul Kwon, Bill Howe, Magdalena Balazinsk, and Jeffrey P. Gardner, “Analyzing Massive Astrophysical Datasets: Can Pig/Hadoop or a Relational DBMS Help?,” In Proceedings of the Workshop on Interfaces and Architecture for Scientific Data Storage (IASDS), 2009
73. J. G. Stadel, “Cosmological N-body simulations and their analysis,”
Ph.D. dissertation, University of Washington, 2001.
74. “The NSF TeraGrid,” http://www.teragrid.org.
75. “TIPSY: A Theoretical Image Processing System,” http://hpcc.astro.washington.edu/tools/tipsy/tipsy.html.
76. “IDL - Data Visualization Solutions,” http://www.ittvis.com/ ProductServices/IDL.aspx.
77. J. P. Gardner, A. Connolly, and C. McBride, “Enabling rapid development of parallel tree search applications,” in Proceedings of the 2007 Symposium on Challenges of Large Applications in Distributed Environments (CLADE 2007).ACM Press, 2007.
78. Jeffrey Gardner,“Enabling knowledge discovery in a virtual universe,”in Proceedings of TeraGrid ’07: Broadening Participation in the TeraGrid.	ACM Press, 2007.
79. A. Cary, Z. Sun, V. Hristidis, and N. Rishe, “Experiences on processing spatial data with mapreduce,” in Proc. of the 21st SSDBM Conf., 2009.
80. M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
S3 for science grids: a viable solution?” in DADC ’08: Proceedings of the 2008 international workshop on Data-aware distributed computing, 2008, pp. 55–64.
81. “LSST Science Collaborations and LSST Project,” LSST Science Book, Version 2.0, arXiv:0912.0201, 2009, http://www.lsst.org/lsst/scibook
82. “Public Data Sets on Amazon Web Service,” http://aws.amazon.com/publicdatasets/
83. J. Deanand and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”pages137-150, December 2004.
84. HDF, http://www.hdfgroup.org/HDF5/
85. Unidata, “NetCDF,”, http://my.unidata.ucar.edu/content/software/netcdf
86. FITS, http://fits.gsfc.nasa.gov/
87. ozone, http://www.ozone-db.org/frames/home/what.html
88. ZODB, http://wiki.zope.org/zope2/ZODBZopeObjectDatabase
89. Daniel J. Adabi, “Data Management in the Cloud: Limitations and Opportunities,” In IEEE Data Engineering Bulletin, 32(1), 2009
90. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. “Order preserving encryption for numeric data,” In Proc. of SIGMOD, pages 563–574, 2004.
91. H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra, “Executing sql over encrypted data in the database-service-provider model,” In Proc. of SIGMOD, pages 216–227, 2002.
92. T. Ge and S. Zdonik. “Answering aggregation queries in a secure system model,” In Proc. of VLDB, pages 519–530, 2007.
93. M. Kantarcoglu and C. Clifton, “Security issues in querying encrypted data,”. In 19th Annual IFIP WG 11.3 Working Conference on Data and Applications Security, 2004.
94. E. Mykletun and G. Tsudik. “Aggregation queries in the database-as-a-servicemodel,” In IFIP WG 11.3 on Data and Application Security, 2006.

Index terms (alphabetically):
3D graphical rendering
Academic Cluster Computing Initiative
always writable
Amazon Web Services
AppNexus
astrophysical cosmological simulation
Azure
B-tree data structure
batch queue system
BigTable
Boxwood project
built-in cache
CAN
Cassandra
Chord
ciberinfrastructures
cloud hosting
condor
conflict management
content-dependent operator
Data Central site
Data Grid
DB2 Parallel Edition
declarative query
diatributed lock
digitized experimental equipment
distributed hash table
distributed key-value store
distributed lockc manager
distributed locking
Dopplerradar
Dryad
DryadLINQ
earth remote sensing
Elastic Block Service (EBS)
Elastic Computing (EC2)
Elastic MapReduce
enviromental observation and modeling
Extremely Large Databases (XLDB)
FITS
GEON LiDAR
GoGrid
Google App Engine
Google Distriuted File System
Google Earth
GrayWulf
Grid computing
Grid network
Hadoop
hardware calibration
Hbase
HDF
Hive
Hive
IBM DB2
image patches
impedance mismatch
imperative programming
Interactive Data Language
Large Hadron Collider
LINQ
LSST
map-reduce
metadata
Microsoft SQL Server
multidisciplinary collaboration
MyDB
N-body Shop
N-body tree codes
N-dimentional array
NCBI
NetCDF
NexRed Doppler radar
Ntropy
Open Mpi
optical astronomy
Oracle Database 11g
Pan-STARR
parallel data discovery
Pastry
PBS
peta-scale
petabyte-scale archives
Pig
Pig Latin language
procedural programming
provenance
Public Data Sets
R-tree
Rackspace
radio astronomy
Real Application Cluster database
real-time data
Relational Database Service (RDS)
Reshape
satellite
scalability
scale-out
SciDB
scientific computing
scientific data
scientific data management
seismology
sensors
sequential data analysis language
shared disks
shared-nothing architecture
Simple Storage Service (S3)
SimpleDB
Sloan Digital Sky Survey
spatial data
SQL
SQL Azure
streaming data
structural operater
structural operator
Subsample
survey telescope
Synaptic Hosting
Tapestry
terabyte
Teragrid
The San Diego Super Computing Center
TIPSY
uncertain data
Unidata
VB
virtual cluster
workflow
Yahoo
Zookeeper

