21

PROCESSOR ARCHITECTURESFOR
MULTIMEDIA

Borko Furht
Florida Atlantic University
Department of Computer Science and Engineering
Boca Raton, Florida 33431

1. INTRODUCTION AND CLASSIFICATION.ccititeteitestisteste e eeseseessesaesae e ste e ssesseennens 448
2. COMPLEXITY OF MULTIMEDIA FUNCTIONS. ...t 449
3. DEDICATED MULTIMEDIA PROCESSORSccoeieienesistesesieseseseeseesae e sse e sneenees 452
31 FUNCTION SPECIFIC ARCHITECTURES.....ciuteiteesteeteeteseesssessessseessessseessesssesssesssesssesssessesnessensns 453
3.2 PROGRAMMABLE DEDICATED ARCHITECTURES.....ccttiiteesteseesseesseesseesseessessseessesssesssessssnessensns 454
33 NEW ARCHITECTURAL TRENDS......eitttitterteesteenseeseeeseesesssessessseessessseessesssesssesssesssesssessesnessensns 458

4. GENERAL-PURPOSE PROCESSORSAND THEIR SUPPORT FOR MULTIMEDIA....... 461
4.1 GENERIC OPERATIONSIN MULTIMEDIA PROCESSING. ..ccvtesteeteeseeeueeeeeeessesseessesssessseessessseenses 461
4.2 INTEL MM X TECHNOLOGY ..vtiiuiiiieeiueesieeseeesseeseesssesneesssessessseessessseessesssesssesnsessessesssesessensns 462
4.3 SUN’SVISUAL INSTRUCTION SET t.uvveeueesreesseesseesseessessseessesssesssessessnsessesssssssesssessseessessseessesnsesnses 463
4.4 OTHER GENERAL-PURPOSE PROCESSORSeuvtesttesueesteesseesseesseessesssesnsessssssssssssssesssesssesssesssesnses 465

5. PERFORMANCE ANALYSIS ..ottt e ettt a ettt enen 465
6. CONCLUSIONS ...ttt s e et e st et e st e e seeseese et e stestestesseaneeneeneanean 466
REFERENCES.cct ottt sttt e s s e s be s beebeeseeseesaensesestestestestensenseennens 467

Abstract. In this chapter, we present contemporary VLS| processor architectures that support
multimedia applications. We classified these processors into two groups: dedicated multimedia
processors, which perform dedicated multimedia functions, such as MPEG encoding or
decoding, and general-purpose processors that provide support for multimedia. Dedicated
multimedia processors use either function-specific architectures with limited flexibility but
higher speed and efficiency, or programmable architectures with increased flexibility. Both
architectures are exploring parallelism inherent in video and image applications by applying
single-instruction, multiple-data (SIMD) or/and very-large-instruction-word (VLIW) concepts.
Advanced general-purpose processors provide the support for multimedia by incorporating
new multimedia instructions and executing them in parallel by using the SIMD coprocessor
approach. A survey of these processor architectures and their performanceis presented in this
chapter.

448 Chapter 21

447
1.INTRODUCTION AND CLASSIFICATION

During the last few years we have witnessed the process of “poising” for multimedia: from PC
and workstation manufacturers (multimedia PCs and workstations), add-in-board vendors
(video and audio capture and playback cards), and silicon vendors (compression and graphics
chips), to operating systems designers (OS support for multimedia) and software creators
(authoring tools and a variety of multimedia applications). The last players to enter this
poising game have been microprocessor designers.

In this chapter, we present a survey of processor architectures designed to support multimedia
applications. Designs of these architectures range from fully custom to fully programmable
dedicated architectures and to general-purpose processor architectures with an extensive
support for multimedia. The classification of these architecturesis shown in Figure 1.

Pr ocessor
Architectures

— T

Dedicated Multimedia Processor s General-Pur pose Pricessors
/\ Intel
_ - MMX (Pentium)
Functlorj-Spemflc Progr_ammable sun
Architectures Architectures VIS (UltraSPARC)
HP
HP-PA RISC2
AT&T exible Adapted MIPS
AV4310 H.261/MPEG-1 Programmable pProgrammat ISA&MDMX
encoder Architectures Ard DEC
AV4220A H.261 decoder | | MVI (Alpha)
AV6110 MPEG-2 Curiv M?2
C-Cube TI MVP NEC
CL450 MPEG-1 decoder IITVCP VSP3
CL9100 MPEG-2 decoder Matsushita
LSl Logic VDSR2
L64112 MPEG-1 decoder C-Cube
L 64002 MPEG-2 decoder VideoRISC
SGS-Thompson Array

Figure 1. Classification of processor architectures that support multimedia.

Dedicated multimedia processors are typically custom designed architectures intended to
perform specific multimedia functions. These functions usually include video and audio
compression and decompression, and in this case these processors are referred to as video
codecs. In addition to support for compression, some advanced multimedia processors

Processor Architectures for Multimedia 449

provide support for 2D and 3D graphics applications. Designs of dedicated multimedia
processors range from fully custom architectures, referred to as function specific architectures,
with minimal programmability, to fully programmable architectures. Furthermore, programmable
architectures can be classified into flexible programmable architectures, which provide
moderate to high flexibility, and adapted programmable architectures, which provide an
increased efficiency and less flexibility [1]. The dedicated multimedia processors use a variety
of architectural schemes from multiple functional units and a RISC or DSP (digital signal
processor) core processors to multiple processor schemes. Furthermore, the latest dedicated
processors use single-instruction-multiple-data (SIMD) and very-long-instruction-word
(VLIW) architectures, as well as some hybrid schemes. These architectures are presented in
Section 3.

General-purpose (GP) processors provide support for multimedia by including multimedia
instructions into the instruction set. Instead of performing specific multimedia functions (such
as compression and 2D/3D graphics), GP processors provide instructions specifically created
to support generic operations in video processing. For example, these instructions include
support for 8-bit data types (pixels), efficient data addressing and 1/0 instructions, and even
instructions to support motion estimation. The latest processors, such as MMX (Intel), VIS
(Sun) and MAX-2 (HP), incorporate some types of SIMD architectures, which perform the
same operation in parallel on multiple data elements.

2.COMPLEXITY OF MULTIMEDIA FUNCTIONS

In video and signal processing applications, a measure of algorithmic complexity is the total
number of operations per second, expressed in MOPS (million operations per second), or
GOPS (giga operations per second). This measure incorporates the total number of primitive
operations needed to perform specific functions, and includes data load and store operations
aswell as arithmetic and logic operations on data elements.

For purposes, we present the calculation of the complexity (adapted from [2]) for an MPEG-2
decoder, shown in Figure 2. We assume the encoded bit rate for the input bit sequence is 4
Mbps. Assuming that the average symbol size is 4 hits, the average rate is then 1 million
symbols/second.

Par ser Deguanti- Motion YUV to
& I zation | IDCT | { Compensation | RGB
VLC Conversion
12 MOPS 7 MOPS 148 MOPS 1;‘/'3‘02'3@ 299 MOPS

TOTAL COMPLEXITY = 609-740 MOPS

MPEG Encoded Reconstructed video
Bitstream (720x480 at 30 fps)
(4Mbps)

Figure 2. MPEG decoder and the complexity of its blocks.

The input video is 720x480 at 30 fps, encoded in 4:2:0 YUV format. In 4:2:0 format, the Y
component contains 720x480 pixels, while U and V components have 320x240 pixels. Total
number of 8x8 blocks in each frame is 90x60 = 5,400 (in Y) and 45x30 = 1,350 (in U and V). This
gives 8,100 blocks in each frame, and total of a 8,100 x 30 sec = 243,000 blocks per second. The

450 Chapter 21

MPEG sequence used for this calculation comprises the group of pictures (GOP) consisting of
11-,4P-, and 10 B-frames.

Block 1: Bit stream parser and variable length (Huffman) decoder

The decoding of 1 symbols requires the following operations:

-1 compare, 1 subtract, and 1 shift for grabbing a variable number of bits from data buffer
(total 3 operations),
1 load, 2 shifts, and 1 mask for searching for a code in a code table (total 4 operations),
and
1 compare, 1 subtract,1 shift, 1 add, and 1 mask for updating the data buffer (total 5
operations).

This gives total of 12 operations per symbol, and total of 12 x 1 million symbols = 12
MOPS for this block.

Block 2: Deguantization
The dequantization, applied to each non-zero DCT coefficient, requires the following
operations:

1 load for reading the quantizer scale matrix (total 1 operation),

2 integer multiplications and 1 division (by a constant of 8 or 16) for dequantization (total
3 operations), and

2logical, 1 compare, 1 shift, and 1 add for the oddification (total 5 operations).

The total count for one DCT coefficient is 9 operations. Among 1 million symbols, we
assume that 80% are coded DCT coefficients. This gives the total complexity of the
quantization block: 9 x 800,000 = 7.2 MOPS.

Block 3: Inverse Discrete Cosine Transform (IDCT)
There are many different implementations for the inverse DCT. For illustration purposes we
assumethefast inverse DCT algorithm, described in [3], that requires the following operations:

464 additions, 80 integer multiplications, and 64 stores for each 8x8 block (total 608
operations per block).

Then, the total complexity of the IDCT block becomes 243,000 blocks x 608 = 147.7 MOPS.
Since not every block is coded in a P- or B-frame, this is the maximum complexity for using the
fast IDCT.

Block 4: Motion Compensation

The worst-case scenario is that al blocks in a P-frame are motion compensated with 4-pixel
interpolation and all blocksin a B-frame are motion compensated with 8-pixel interpolation from
two predictor frames. For an 8x8 block in a P-frame, the following operations are required:

8x9x2 = 144 load operations for reading blocks with both horizontal and vertical
overlapping (total 144 operations),

3 additions and 1 shift for interpolating one predictor pixel (total 4x64 = 256 operations),
and

1load, 1 addition, 2 compares, 1 assignment, and 1 store for reconstructing the pixel (total
6x64 = 384 operations).

Processor Architectures for Multimedia 451

The total number of operations for each block is 784. Because there are 8 P-frames in a one-
second sequence, the total complexity for P-framesis: 8 x 8,100 blocks x 784 = 50.8 MOPS.

For each 8x8 block in a B-frame, the following operations are required:

2x(8x9x2) = 288 operations for reading blocks from two predictor frames (total 288
operations),

3 additions and 1 shift for interpolating one predictor pixel from the first frame (total 4x64 =
256 operations),

3 additions and 1 shift for interpolating one predictor pixel from the second frame (total
4x64 = 256 operations),

2 additions and 1 shift for forming the final pixel predictors (total 3x64 = 192 operations),
and

1load, 1 addition, 2 compares, 1 assignment, and 1 store for reconstructing the pixel with
clipping (total 6x64 = 384 operations).

The total number of operations for each block is 1,376. There are total of 20 B-framesin a one-
second sequence and, therefore, the total complexity for B-framesis 20 x 8,100 blocks x 1,376 =
222.9 MOPS. Adding complexities for P- and B-frames, the complexity for motion compensation
becomes 273.7 MOPS.

The best case scenario for motion compensation is when all P- and B-frame blocks have no
pixel interpolation. Then, the total number of operationsis 143.1 MOPS.

Block 5: YUV to RGB Color Conversion
The conversion from YUV to RGB color format, based on CCIR-601 standard, can be performed
using the following formula:

Ry 611644 0 1.5966 (6Y - 16
e~u_ u
éG@— 3.1644 -0.3920 - 0.8132L:“gu - 128@
6B @.1644 20184 0 FBV- 128§

@

where Y and U/V are clipped prior to transform to the ranges [16,240] and [16,235],
respectively.

The following operations are required for each pixel:

1.5loadsfor reading YUV (total 1.5 operation per pixel),

1.5 subtractions, 2.5 compares, and 3 assignments for YUV clipping (total 7 operations per
pixel),

2 integer multiplications, 3.25 additions, and 3 shifts for the transformation (total 8.25
operations per pixel),

6 compares and 3 assignments for RGB clipping (total 9 operations per pixel), and

3 stores for writing RGB (total 3 operations per pixel).

Thetotal number of operations per each pixel is28.75. Inthe 4:2:0 YUV format, thereare4 Ys, 1
U, and 1V for each pixel. The total number of pixelsin one second becomes 10.4 million, which
givesthetotal complexity for YUV to RGB color conversation 28.5 x 10.4 million = 299 MOPS.

452 Chapter 21

In summary, the complexity of the analyzed MPEG decoder is in the range from 609.0 to 739.6
MOPS, asindicated in Figure 2.

Table 1 shows complexities of various H.261 and MPEG encoders and decoders reported in the
literature. They differ from one to another due to different implementations of DCT and IDCT
algorithms, search algorithms for motion estimation, and formulas used for RGB to YUV
transformations.

Table 1. MOPS Requirements for avariety of (a) H.261, and (b) MPEG Encoders and Decoders,
Reported in the Literature [4,5,6]

H.261 CODECS Complexity of Complexity of

Encoders Decoders
[MOPS] [MOPS]

CIF format at 30 fps

Fast implementation of 968 198

DCT

Logarithmic search for

motion estimation [5]

CIF at 15 fps

Exhaustive motion 1,240-1,320 220-315

estimation

algorithm [4]

CIF at 30 fps

Exhaustive motion 2,480-2,640 440-630

estimation

algorithm [4]

CIF at 30 fps Total Total Encoder/Decoder

Logarithmic search for Encoder/Decoder 1,193

motion estimation [6] 1,193

Complexity of Encoders[MOPS Complexity of Decoders [MOPS]

MPEG SIF CCIR 601 HDTV SIF CCIR 601 HDTV

CODECS | 352x240 720x486 | 1440x115 352x240 720x486 1440x115
[5] 2 2

No 738 3,020 14,498 96 395 1,898
B-frames
20% 847 3,467 16,645 101 415 1,996
B-frames
50% 1,011 4,138 19,865 108 446 2,143
B-frames
70% 1,120 4,585 22,012 113 466 2,241
B-frames

MOPS requirements for avariety of multimedia functions are estimated and presented in Figure
3. In the same figure, the current trends in computing power of GP processors, programmable
digital signal processors, and progranmable video processors are plotted [5],[7]. It can be
concluded that it is feasible to implement MPEG-1 or MPEG-2 decoders using GP or DSP
processors. However, the encoder requirements, which are more than 1000 MOPS, are still
outside of the complexity of GP processors and, therefore, dedicated multimedia processors
must be designed.

3. DEDICATED MULTIMEDIA PROCESSORS

Processor Architectures for Multimedia 453

In designing dedicated multimedia processors, the selection of architectures depends on the
speed requirements of the target function and the constraints on circuit integration,
performance, power requirements, and cost. In order to assess and evaluate various
architectures, the well-known AT-product is used [1]. Efficiency of an architecture (E) is
defined as:

L @
As~ Tp

E =

where: Asi istherequired silicon areafor a specific architecture under evaluation, and
Tp isthe effective processing time for one sample.

A comprehensive evaluation of dedicated multimedia processors can be found in [1].
Dedicated multimedia processors, presented in this section, are based on function specific
architectures and programmable architectures.

Complexity
A
HDTM. —{—
—-1 " Encode
L Mirtesl
10,000 — Dedicated /_/_,-—" Reality
Multimedia Processors _. /»f"
P Cable | .-
D Modems™
Graphic DVD . }-tz” HDTV
T Decode
ADS T
1.000 — Programmé?lgpg?s.-- H.261 |SDN. ! s
S Encod JStiaat
=T 'éeneraI—Purpose Processors
V.34 _ _MPEG2
Modem. P Decode
GUI _1--
Acce. | -7
100] = MPEG1
Decode
| [I >
1995 TIME 2000

Figure 3. MOPS requirements for various multimedia functions and
the current trends in computing power.

3.1 FUNCTION-SPECIFIC ARCHITECTURES

Function-specific multimedia architectures provide limited, if any, programmability, because
they use dedicated architectures for a specific encoding or decoding standard. However, their
efficiency and speed are typically better compared to programmable architectures. The silicon
area optimization achieved by function-specific architectures allows lower production cost.

Regardless of implementation details, the general design theme for dedicated multimedia
processors consists of using

aDSP or RISC core processor for main control, and

44 Chapter 21

specia hardware accelerators for the DCT, quantization, entropy encoding, and motion
estimation.

A block diagram of a typical function-specific architecture for a video encoder is shown in
Figure 4. In the first generation of function-specific video processors, each of these functions
was implemented in one chip, and a chipset was necessary to create the system for encoding
or decoding. However, the next generations of function-specific architectures integrate all
these functionsin asingle VLSI chip.

Some popular commercially available dedicated function specific video processors are listed in
Figure 1.

External

Host I/0
memory
Multimedia processor
Video Compressed
input Video Bus Memory Motion video
" Interface Host Bus Management Estimati Output
Interface - stimation FIFO
FIFOs Unit Processing
Control FDCT/IDCT L VLC
Processor Processing Quantization Processing

Figure 4. Block diagram of atypical function-specific architecture for a video encoder. The dedicated
processors (or functional units) are used for various operations, such as DCT, quantization,
variable length coding (VLC), motion estimation, etc.

3.2 PROGRAMMABLE DEDICATED ARCHITECTURES

In contrast to function oriented approach with limited flexibility, programmable architectures
enable the processing of different tasks under software control. The main advantage of
programmabl e architectures is the increased flexibility. Changes of architectural reguirements,
such as changes of algorithms or an extension of the application domain, can be handled by
software changes.

On the other hand, programmable architectures incur a higher cost for design and
manufacturing, since additional hardware for program control is required. In addition,

Processor Architectures for Multimedia 455

programmable architectures require software development for the application. Video coding
applications require real-time processing of the image data and, therefore, paralelization
strategies have to be applied.

Two aternative programmable architectures include: (a) flexible programmable architectures
and (b) adapted programmabl e architectures.

3.2.1 Flexible Programmable Ar chitectures

Flexible programmable architectures, with moderate to high flexibility, are based on
coprocessor concept as well as parallel datapaths and deeply pipelined designs. An example of
acommercially available video processor, based on flexible programmable architecture, isTI’s
Multimedia Video Processor (MVP) TMS320C80 [6]. The MVP combines a RISC master
processor and four DSP processors in a crossbar-based SIMD shared-memory architecture, as
shownin Figure5.

TI MVP Processor

RISC
DSP DSP DSP DSP Master
Processor 1 Processor Processor 3 Processor 4] Processor
Video i
o Display/
‘ Control Capture
—P>
GLOBAL CROSSBAR
Transfer .
Controller (g Main
Memory
DRAM DRAM DRAM DRAM MP's
Memory Memory Memory Memory

Data and
I-cache

and

and and and
I-cache

I-cache I-cache I-cache

Figure 5. Block diagram of TI’s Multimedia Video Processor.

The master processor can be used for control, floating-point operations, audio processing, or
3D graphics transformations. Each DSP performs all the typical operations of a genera-
purpose DSP and can also perform bit-field and multiple-pixel operations. Each DSP has
multiple functional elements (multiplier, ALU, local registers, a barrel shifter, address
generators, and a program-control flow unit), all controlled by very long 64-bit instruction
words (VLIW concept). The RISC processor, DSP processors, and the memory modules are
fully interconnected through the global crossbar network that can be switched at an
instruction clock rate of 20 ns. A 50 MHz MV P executes more than 2 GOPS.

456 Chapter 21

The MV P has been integrated into the M ediaStation 5000 programmable multimedia system [8].
Its key function in this system is MPEG compression. The data flow in the system during
MPEG compression is shown in Figure 6. Video data are captured into the video buffer at a
resolution of 320x240. The MV P reads the data from the video buffer and stores it in the main
(DRAM) memory. The MVP performs all MPEG compression functions on the data stored in
the main memory. Similar operations are performed on the digitized audio samples. Once when
the MV P completes the compression of a video or audio frame, the compressed bit stream is
sent to the host computer, where the audio and video streams are multiplexed together,
synchronized, and stored on adisk or transferred to a network.

Video in
Video Decoder |eg——

Video Buffer

MVP Video data

Audio data

Video and
audio Video out

compression RAM DAC —

g
Frame Buffer

Graphics
screen data

Audio in

— Audio FIFOs Audio Decoder

DRAM Memory

MPEG Code

Current frame MPEG
Reference frames Video bitstream HOST Bitstream
Audio bitstream PROCESSOR
MPEG system

multiplexing Network

Figure 6. Data flow in the MV P during the MPEG compression [8].

Performance results, reported in [8], show that the MediaStation 5000 system can achieve a
real-time compression (30 fps) of MPEG-1 video sequences with resolutions of 320x240 (SIF
format). The reported compression times for | frames are 17.7 ms, for P frames 27.3 ms, and for
B frames 30.5 ms; for all frame types less than the video frame period of 33 ms. Multiple MV Ps
are needed for real-time MPEG-2 encoding.

3.2.2 Adapted Programmable Ar chitectures

Adapted programmabl e architectures provide increased efficiency by adapting the architecture
to the specific requirements of video coding applications. These architectures provide
dedicated modules for several tasks of the video codec algorithm, such as DCT module or

variable length coding [9],[10].

Processor Architectures for Multimedia 457

Examples of a commercially available multimedia processor based on adapted programmable
architecture are VideoRISC processors (VRP and VRP2) from C-Cube Microsystems. The VRP2
processor consists of a 32-bit RISC processor and two special functional units for variable-
length coding and motion estimation, as shown in the block diagram in Figure 7. Specially
designed instructions in the RISC processor provide an efficient implementation of the DCT
and other video-related operations. The VRP can perform real-time MPEG-1 encoding and
decoding; however, the real-time MPEG-2 encoding requires a design consisting of 8 to 13
VRP2 processors.

Table 2, adapted from [5], shows commercially available programmable processors and their
features.

VideoRISC Processor
RISC Core
VLG Instruction Data - Motion
Cache Cache la—{ Estimator
Video I/0 Host /O DMA I/0
Video In | " Video Out vHost Bus * Local DRAM

Figure 7. Block diagram of the C-Cube's VideoRISC processor, which applies an adapted programmable
architecture.

Table 2. Programmable Multimedia Processors

Multimedia Clock [MHZ] GOPS Key Characteristics
Pr ocessor
Flexible programmable
TI MVP 50 2 MPEG-1 encoder/decoder
(TMS320C80) MPEG-2 decoder
H.261 codec
Flexible programmable
1T VCP S0 2 MPEG-1 encoder/decoder

MPEG-2 decoder

458 Chapter 21

H.261 codec

NEC VSP3 300 15 Adapted programmable
H.261 codec

C-Cube VideoRISC2 60 25 Adapted programmable

MPEG-1 encoder/decoder
Adapted programmable
Matsushita VDSP2 100 2 MPEG-2 encoder (requires
external motion estimation)
Adapted programmable

Array Microsystems 50 1 MPEG-1 encoder (requires
VideoFlow External motion estimation and
Huffman encoder)

MPEG-2 decoder

Comparison of these two programmabl e architectures in terms of silicon area and frame rate, for
a variety of codec implementations reported in the literature, is performed in [1]. Adapted
processor design can achieve an efficiency gain in terms of the AT criterion by a factor 6-7
compared to flexible architectures. According to this study, 100mm?GOPS for flexible
architectures and 15 mm?GOPS for adapted programmable architectures are needed for a
typical video codec.

3.3 NEW ARCHITECTURAL TRENDS

The advanced dedicated multimedia processors use SIMD and VLIW architectural schemes
and their variations to achieve very high parallelism. Figure 8 shows the architectural models
applied in contemporary multimedia processors and several promising approaches.

Contemporary Architectures
For Multimedia Processors

VLIW SIMD Combined VLIW RISC Processor Other
advanced
Architecture Architecture & SI‘VID Architecture & SIMD Engine approaches

| | |
T T

Mitsubishi TI MVP Chromatix Samsung MIMD

D30V Mpact MSP M-SIMD

I?I'hl'“pesd' Microunity Lucent
rimedia N

Mediaprocess AVP I SPDM

Figure 8. The architectural models applied in advanced multimedia processors.

Two commonly used parallel schemes, the SIMD and the VLIW, are described next. The
SIMD parallel computer organization, applied in multimedia processors, typically uses asingle
control unit (or master processor), a number of processing elements (PESs), and shared memory
among the PEs, as shown in Figure 9 [11]. An interconnection network, such as crossbar
switch, is used to interconnect the control processor, all PEs, and shared memory. The control
processor evaluates every instruction. If it is a scalar or program control operation, a master

Processor Architectures for Multimedia 459

processor will directly executeit. If the instruction is a vector operation, it will be broadcast to
all the PEs for parallel execution. Partitioned data sets are distributed to the shared memory
modules before starting the program execution. Then, the same instruction is executed by all
the PEsin the same cycle, but on different data elements.

The VLIW architectural model is used in the latest dedicated multimedia processors. A typical
VLIW architecture uses long instruction words with more than hundreds of bitsin length. The
idea behind VLIW concept is to reduce the number of cycles per instruction required for
execution of highly complex and parallel algorithms by the use of multiple independent
functional units that are directly controlled by long instruction words. This concept is
illustrated in Figure 10, where multiple functional units operate in parallel under control of a
long instruction. All functional units share a common large register file [11]. Different fields of
the long instruction word contain opcodes to activate different functional units. Programs
written for conventional 32-bit instruction word computers must be compacted to fit the VLIW
instructions. This code compaction is typically done by a special compiler, which can predict
branch outcomes by applying an algorithm known as trace scheduling.

Main
Memory
Scalar Scalar Control
Processor | _Instructions unit |— control jet————
Memory
Host
Processor
Broadcast Bus vVector Instructions
Processing Processing Processing| ‘
Element 1 Element 2 e Element n Network
Control

\J

Interconnection Network

by '

Shared Shared Shared
Memory 1 Memory 2 I Memory m

+ Data Bus *

Figure 9. A general SIMD architectural model applied in multimedia processors.

SIMD and VLIW approaches require a giant routing network of buses and crossbar switches.
VLIW machines fetch one large instruction per clock cycle and execute all operations on
different ALUs. The advantage of this approach is that the ALUs can be specialized to fit the
requirements of a given set of applications. However, these architectures’ use of silicon is
inefficient, because of the arearequired by the huge interconnection network and hundreds of
pipeline data paths.

460 Chapter 21

Another approach consists of combining a RISC processor with a SIMD machine that operates
as a vector processor. A SIMD engine simply executes a conventional 32-bit instruction per
clock cycle. This instruction processes a single vector of data points, which execute on a set
of identical ALUs of a single pipeline. The data vector is treated as a single number for
operand access and memory references. The advantage of this approach includes an efficient
use of silicon, because only one pipeline hasto be implemented, rather than hundreds.

The next generation of programmable multimedia processors incorporatesincreased parallelism
by combining SIMD, VLIW, and some other hybrid architectural schemes. For example, the
Mitsubishi D30V and Philips Semiconductor’s Trimedia use the VLIW architecture to boost
the performance of their video processors. The Chromatix Mpact multimedia processor
combines both VLIW and SIMD concepts. The Lucent’s AVP |11 uses a RISC processor and
an SIMD engine for highly parallel operations, and has dedicated functional units for motion
estimation and variable-length encoding and decoding.

Main Data
Memory < > Register File
Operands¢ ¢ ¢ * ¢ ¢
Load/ nt FP Branch
Long Store nteger AdFJ Unit
Instructions Unit ALU Unit
Control * I_ A + |
Signals | ! i
. Long
Load/Store | Integer ALU |FP Multlply|...| FP Add | Branch | Instruction Word
Instruction Register |—| Control
Unit

Figure 10. The very-long-instruction-word (VLIW) architectural model applied in
dedicated multimedia processors.

Samsung’'s Multimedia Signal Processor (MSP) combines a traditional RISC controller with
SIMD vector processor (VP) and special-purpose hardware engines. The RISC processor runs
the RTOS, performs overall system management and control, and some scalar media
processing. The VP processor performs high-performance signal processing. Special-purpose
hardware units handle some other functions that cannot be performed efficiently in the other
two units.

The Mediaprocessor from Microunity Systems Engineering (Sunnyvale, CA) combines a 128-
bit load-and-store RISC engine (VLIW concept) with an SIMD-like variation, called single-

Processor Architectures for Multimedia 461

instruction-group-data (SIGD) parallelism. The architecture also includes a large register file
allowing tens of instructions to be executed in parallel. In addition, it also has an execution
pipeline that can be either deep (superpipelined), wide (superscalar), or both [7].

Promising Approaches
For the performance and functionality that will be required in next five years, several new
approaches are evolving (see Figure 8).

Multiple-instruction, multiple-data (MIMD) architectures offer 10 to 100 times more
throughput than existing VLIW and SIMD architectures. In the MIMD approach, multiple
instructions are executed in parallel on multiple data, requiring a control unit for each data
path. This requires a significant increase in silicon area to implement a control unit for each
data path. In addition, a major practical limitation of the MIMD approach is that its implicit
asynchronous nature increases the complexity of software devel opment.

Due to these limitations, other hybrid solutions are being studied. One approach is referred to
as multiple single-instruction, multiple-data (M-SIMD) or SIMD clustering. In this approach,
several SIMD clusters are used, each of which consists of a specific number of data paths and
an associated control unit. The data paths within each cluster operate as a SIMD array, while
the clusters operate in the MIMD mode.

Another promising approach, referred to assingle-program, multiple-data (SPDM), combines
SIMD and MIMD architectural features. The SIMD nature of this architecture is that it
executes a single program or a task at a time, while the MIMD feature is that the data paths
operate asynchronously.

4. GENERAL-PURPOSE PROCESSORS
AND THEIR SUPPORT FOR MULTIMEDIA

The real-time multimedia processing on PCs and workstations is still handled by dedicated
multimedia processors. However, the advanced GP processors provide an efficient support for
certain multimedia applications. These processors can provide software-only solutions for
many multimedia functions, which may significantly reduce the cost of the system.

GP processors apply the SIMD approach, described in previous section, by sharing their
existing integer or floating-point data paths with a SIMD coprocessor. All leading processor
vendors have recently designed GP processors that support multimedia, as shown in Figure 1.
The main differences among these processors are in the way they reconfigure the internal
register file structure to accommodate SIMD operations, and the multimedia instructions they
choose to add.

4.1 GENERIC OPERATIONSIN MULTIMEDIA PROCESSING

The instruction mix of multimedia extensions of GP processors varies depending on their
application focus. Table 3, adapted from [5], shows typical arithmetic operations required for
the main functional blocks of the image and video compression standards, their complexity,
inherent parallelism, and the speed-up achieved by current GP processors based on the SIMD
approach.

The following conclusions drawn from Table 3 can be used as the main guidelines when
specifying multimedia extensions for GP processors [5]:

Input data and coefficients are typically 8-bit and 16-bit data elements.

462 Chapter 21

Thereis no need for floating-point operations.

The multiply-accumulate operation is very common, but most of multiplications are with
constants.

Saturation arithmetic, where the result is clipped to the maximum or minimum value of a
predefined range, is common in many operations.

With the exception of the Huffman (variable length) encoder and decoder, all other operations
can be parallelized. Therefore, contemporary GP processors take advantage of this fact by
applying the SIMD approach to these operations. A SIMD coprocessor typically performs up
to four identical arithmetic or logic operations on different integer-type data. This approach
can significantly boost the performance of the GP processors in handling multimedia
applications with inherent parallelism (video compression and decompression, image filtering,
etc.).

In addition to the arithmetic operations, video processing requires efficient data addressing
and 1/0 processing, which isimplemented in some GP processors.

Several contemporary GP processors with multimedia extensions are described in the following
sections.

Table 3. Generic Operations Needed for Multimedia Compression

Function Operations Complexity Parallelism
Color transformation | ScCiXi, clip() Cpnstant for every Highly parallel
(RGB-YUV) (Xi+Xj)/2 pixel
Preprocessing and (U4)SXi
Postprocessing
FDCT and IDCT ax+b Either constant or a | Depends on the

SCiXi function of the | implementation of
average FDCT or IDCT
number of non-zero
DCT coefficients

Quantization Xi/Ci Constant for every | Highly parallel
pixel
Dequantization XiCi Function of the | Highly parallel
average number of
non-zero
DCT coefficients
Motion estimation Syxi-Yivor Depends on the | Highly parallel
L selected both data-intensive
(Encoder) S(X"Y')2 motion estimation and
min(a,b) algorithm instruction-intensive
processing

Motion Xi+cXj Block copies with Highly parallel
compensation Block copies pixel interpolations
(Decoder) Pixel interpolations
VLC (Huffman) Data shifts Function of the | Fully sequentia
Encoding/Decoding Comparisons average

number of symbolsin

the bitstream

Processor Architectures for Multimedia 463

4.2 INTEL MMX TECHNOLOGY

Intel MMX technology for Intel Pentium processors is targeted to accelerate multimedia and
communications applications, especially on the Internet. The fundamental architectural
concept in the MMX system consists of the paralel, SIMD-like operation on small data
elements (8 and 16 bits). The MMX system extends the basic integer instructions; add,
subtract, multiply, compare, and shift into SIMD versions. These instructions perform parallel
operations on multiple data elements packed into new 64-bit data types (8x8 bit, 4x16 bit, or
2x32 hit fixed-point elements). The MMX instructions also support saturation arithmetic,
described in Section 4.1, which isimportant for multimedia applications.

The following example of image composition illustrates how the SIMD concept has been
implemented in the Intel MMX system [12]. In this example, fade-in-fade-out effect in video
production is performed between two images, A and B, to produce the final image, R, as a
weighted average of A and B:

R = A" fade + B*(1- fade) = fade*(A- B)+B)

wherefadeis gradually changing from 1 to 0 across afew video frames, thus producing a fade-
in-fade-out effect. Let's assume that the frames are in RGB format, where R, G, and B
components are not interleaved. In that case, the MM X processor can access four elements of
both A and B framesin asingle memory access, subtract them in parallel, and then multiply the
result with the fade factor in parallel, as illustrated in Figure 11. The MMX code performing
this operation is shown in Figure 12.

Performance results for the Pentium processor with MM X technology, reported in [12], show
the improvement between 65% to 370% over the same Pentium processor without MM X
technology. For example, MPEG-1 video decompression speed up with MMX is about 80%,
while some other applications, such as image filtering speed up to 370%.

Image A Image B
G G
R R
64 bit word
A3 A2 Al A0 Br3 Br2 Brl B
1. Unpack pixel components \M
from image A and B | Ar3 IM)((MO /
2. Subtract image B from image A | Br3 I Br2 | Bri | Bro |
| Rs | re | R1 | RO |

3. Multiply result by ‘fade’ value

| fade I fade | fade | fade |
| fade*R3 | fade*Rzl fade*RlI fade*R1 |

4. Add image B
+ + + +

[B3 | B2 | B1 | BO |

| new R3 I new R2 | new R1 | new RO|

5. Pack new composite pixels back
to bytes
Ar3 Ar2 Arl Ar0

464 Chapter 21

Figure 11. Image composition - fade-in-fade-out effect performed by the MMX system [12].

4.3 SUN'SVISUAL INSTRUCTION SET

Sun has developed Visual Instruction Set (VIS) for its UItraSPARC processors, which provides
graphics and image processing capabilities needed for multimedia applications [13],[14]. The
VIS supports new data types used for video processing pixels and fixed data. Pixels consist of
four 8-bit unsigned integers contained in a 32-bit word, while fixed data consist of either four
16-bit fixed point components or two 32-bit fixed point components both contained in a 64-bit
word. The SIMD concept has also been applied for some arithmetic and logic instructions
(multiplication, addition, subtraction, and logical evaluations), providing parallel operation on
four pixels. An innovative concept, applied in the UltraSPARC, is the motion estimation
instruction (PDIST), implemented in hardware rather than software. The hardware-implemented
instruction PDIST computes the sum of the absolute differences between two 8 pixel vectors,
which would require about 48 operations on most processors. Accumulating the error for a
16x16 block requires only 32 PDIST instructions; this operation typically requires 1500
conventional instructions. The hardware implementation of the PDIST (pixel distance)
instruction is shown in Figure 13. The circuitry consists of three 4:2 adders, two 11-bit adders,
and a 53-bit incrementer. It operates on 8-bit pixels, stored in a pair of double-precision
registers, and produces the result in a single-cycle operation.

As reported in [2],[14], the VIS provides four times or greater speedup for most of the time-
critical computations for video decompression, including IDCT, motion estimation, and color
conversion. According to an analysis, reported in [2], a 200-MHz UltraSPARC processor is
capable of decoding MPEG-2 video of 720x480 pixels resolution at 30 fps entirely in software.

pxor mm7,mm7 , zero out mm7

movq mm3,fade val ; load 4 times replicated fade value
movd mmO,image A ; load 4 red pixel components from
image A

movd mml,imageB ; load 4 red pixel components from
image B

punpcklbw mmO,mm7 ; unpack 4 pixels to 16 bits
punpcklbw mm21,mm?7 ; unpack 4 pixelsto 16 bits

psubw mmO,mm1 ; subtract image B from A
pmulhw mmO0,mm3 ; multiply result by fade values
paddw mmO,mm1 ; add result to image B

Figure 12. MM X code performing fade-in-fade-out effect [12].

Processor Architectures for Multimedia 465

8 pixels stored in two 32-bit registers

Pixel Pixel Pixel Pixel
(8 bits) (8 bits) (8 bits) (8 bits)

Pixel Pixel Pixel Pixel
(8 bits) | (8 bits) | (8 bits) | (8 bits)

4:2 ADDER 4:2 ADDER

S

4:2 ADDER

3rd source (Accumulator) 11-bit ADDER
53-bit INCREMENTER \ 11-bit ADDER /

Figure 13. The implementation of the motion estimation instruction in UltraSPARC processor.

4.4 OTHER GENERAL-PURPOSE PROCESSORS

The majority of contemporary general-purpose processors also support multimedia
applications (Figure 1). They all apply similar concepts, such as support for new data types
and SIMD-like parallel execution of arithmetic and logic operations.

4.4.1 HP PA7100L C Processor

Hewlett-Packard has introduced the PA7100L C processor and its successor HP-PA RISC2 [15].
The processor has two ALU units, which allows a parallelism of four 16-bit operations per
cycle. Implementing the color conversation step together with the color recovery step has
enhanced the graphics subsystem. Color conversation converts between Y CbCr and the RGB
color formats, while color recovery allows 24-bit RGB color that had been “color compressed”
into 8 hits to be converted back to 24-bit color before being displayed (dithering operation).
This enhancement reduces the display operation in MPEG decoding. The memory controller
and the 1/O controller have been integrated, which significantly reduces the overhead in the
memory to frame buffer bandwidth.

4.4.2 DEC Alpha 21164 Processor and MVI Extensions

The Alpha architecture has been enhanced with Mation Video Instruction (MV1) extensions
[16]. The MVI consists of three classes of instructions. pixel-error instruction (PERR),
Max/Min, and Pack/Unpack instructions. The PERR motion estimation instruction computes
the sum of absolute value of differences of eight pairs of bytes. It replaces nine traditional
operations. The Max and Min instructions allow efficient clamping of pixel values to the
maximum or minimum values, which is convenient for image and video processing applications.
The Pack and Unpack instructions expand and contract the data width on bytes and words.
Initial results indicate that MV improves MPEG-2 compression performance more than 400%,
compared to the Alpha 21164 processor without MVI [16].

466 Chapter 21

443 MIPSV Processor and SGI MDM X Extensions

MIPS V processor supports multimedia applications through its instruction-set architecture
(ISA) extensions and MIPS Digital Media Extensions (MDMX). Similar to other processors,
ISA extensions use new data types (8 bits and 16 bits) and a SIMD approach to perform some
arithmetic and logical operations in parallel. MIPS ISA extensions, unlike other processors,
also provide support for single-precision floating point operations, which are useful for front
end image and video synthesis. MDMX extensions, nicknamed Mad Max, use the innovation
from the DSP world, by providing an accumulator with extra precision to support the width
required by intermediate calculations. Unlike DSPs, MDMX implements a vector accumulator
to take advantage of the SIMD aspect of the instruction set.

45 PERFORMANCE ANALYSIS

In summary, GP processors that support multimedia apply new integer data types, well suited
for multimedia, new multimedia instructions, and an SIMD architecture for parallel execution of
identical instructions on different data.

An example, adapted from [2], shows how a GP processor with an SIMD coprocessor can
speedup the MPEG-2 decoding. In the example in Section 2, we calculated the complexity of a
typical MPEG-2 decoder, and the obtained results were in the range 609-740 MOPS. However,
in most GP processors integer multiplication has a higher complexity than other instructions
and, therefore, we will assume that one multiplication is equivalent to 4 generic operations. In
this case, the complexity of the MPEG-2 decoder becomes 735 to 876 MOPS for a bit rate of 4
Mbps.

As indicated earlier, the block 1 bit stream parsing and Huffman decoder, cannot be
paralellized, and its complexity remains the same — 12 MOPS. However, operations in al the
other blocks can be parallelized by afactor 4, assuming a SIMD coprocessor that executes four
identical parallel operations on different data. The complexity of the MPEG-2 decoder,
implemented on such GP processor, becomes in the 194 to 227 MOPS range, as illustrated in
Table 4.

Similarly, for an increased bit rate of 8 Mbps, the total MPEG-2 complexity on a GP processor
with an SIMD coprocessor becomes 220-250 MOPS, and for 16 Mbps, isin the 320-352 MOPS
range[2].

Table 4. The Complexity of the MPEG-2 Decoder and Its |mplementation on a GP Processor
with an SIMD Coprocessor

Parallel Implementation
MPEG-2 Functions Complexity [MOPS] on a GP Processor Using
a SIMD copr ocessor
Parser & VLC 12 12
Dequantization 14 4
IDCT 206 52
M otion Compensation 143-274 36-69
YUV to RGB Conversion 360 90
TOTAL COMPLEXITY 735-876 194-227

Processor Architectures for Multimedia 467

Contemporary GP processors use superscalar RISC architectures, in which the number of
executed instructions is at least 2 x Clock Frequency. Therefore, a 200 MHz processor can
execute about 400 MOPS, which suggests that a software-only MPEG-2 decoder can be easily
implemented. However, according to Table 1, MPEG encoders require 3,000 to 22,000 MOPS,
and even their paralel implementation using a SIMD approach, will require around 1,000
MOPS. This still cannot be achieved with GP processors and dedicated multimedia processors
must be used.

5. CONCLUSIONS

In summary, general-purpose designers have recently realized that they should begin
investing some of the available chip real estate to support multimedia. We should expect that
new generations of GP processors would devote more and more transistors to multimedia. How
far and how fast this process will go will be determined by the market demand. By the end of
this decade we may see a complete MPEG decoder, large frame buffers, a variety of functional
units for video, image, and audio processing, and much more, all packed within a single
processor chip.

On the other hand, computationally intensive multimedia functions, such as MPEG encoding,
HDTV codecs, 3D processing, and virtual reality, will still require dedicated processors for a
long time to come. Therefore, we can expect that general-purpose processors that support
multimedia and dedicated multimedia processors will coexist for sometime.

REFERENCES

1. Pirsch, P, Demassieux, N., and Gehrke, W., “VLS| Architectures for Video Compression —
A Survey,” Proceedings of the |EEE, 83(2), 220-246, February 1995.

2. Zhou, C-G, Kohn, L., Rice, D., Kabir, 1., Jabbi, A., and Hu, X-P., “MPEG Video Decoding
with the UltraSPARC Visua Instruction Set,” Proceedings of the IEEE Compcon, San
Francisco, CA, March 1995, pp. 470-475.

3. Pennenbaker, W.B. and Mitchell, J.L., “JPEG Still Image Data Compression Standard,” Van
Nostrand Reinhold, New Y ork, 1993.

4. Fujiwara, H., Liou, M.L., Sun, M-T., Yang, K-M., Maruyama, M., Shomura, K., and
Ohyama, K., “An All-ASCI Implementation of a Low Bit-rate Video Codec,” |IEEE Trans.
On Circuits and Systems for Video Technology, 2(2), 123-134, June 1992.

5. Bhaskaran, V. and Konstantinides, K., “Image and Video Compression Standards —
Algorithms and Architectures,” Kluwer Academic Publishers, Boston, MA, 1995.

6. Guttag, K., Gove, R.J,, and Van Aken, JR., “A Single-Chip Multiprocessor For Multimedia:
The MVP,” IEEE Computer Graphics & Applications, 53-64, November 1992.

7. Cole, B., “New Processors Up Multimedia’ s Punch,” Electronic Engineering Times, 71,
February 3, 1997.

8. Lee W, Kim, Y., Gove, R.J, and Reed, C.J,, “MediaStation 5000: Integrating Video and
Audio,” |[EEE MultiMedia, 1(2), 50-61, Summer 1994.

9. Ackland, B., “The Role of VLS in Multimedia,” |EEE J. Solid-State Circuits, 29, 1886-
1893, December 1992.

10. Akari, T. et al., “Video DSP Architecture for MPEG2 Codec,” Proceedings of ICASSP, Val.
2, |EEE Press, 417-420, 1994.

11

13.

14.

15.

16.

Chapter 21

Hwang, K., “Advanced Computer Architecture with Parallel Programming,” McGraw-Hill,
1993.

Peleg, A., Wilkie, S., and Weiser, U., “Intel MMX for Multimedia PCs,” Communications
of the ACM, 40(1), 25-38, January 1997.

Tremblay, M., O’'Connor, JM., Narayanan, V., and Liang, H., “VIS Speeds New Media
Processing,” |EEE Micro, 16(4), 10-20, August 1996.

Kohn, L., Maturana, G., Tremblay, M., Prabhu, A., and Zyner, G., “The Visual Instruction
Set (VIS) in UltraSPARC,” Proceedings of the IEEE Compcon, San Francisco, CA, 462-
469, March 1995.

Lee, R.B. “Redtime MPEG Video via Software Decompression on a PA-RISC Processor,”
Proceedings of the |EEE Compcon, San Francisco, CA, 186-192, March 1995.

Bannon, P. and Jain, A., “MVI Instructions Boost Alpha Processor,” Electronic
Engineering Times, 74, February 3, 1997.

