
484 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 4, APRIL 1997

The Balanced Hypercube: A Cube-Based
System for Fault-Tolerant Applications

Jie Wu, Senior Member, IEEE, and Ke Huang

Abstract —In this paper, we present an interconnection structure,
called the balanced hypercube, which is a variation of the standard
hypercube with desirable properties of strong connectivity, regularity,
and symmetry. The proposed structure is a special type of load
balanced graph designed to tolerate processor failure. In balanced
hypercubes, each processor has a backup (matching) processor that
shares the same set of neighboring nodes. Therefore, tasks that run on
a faulty processor can be reactivated in the backup processor to
provide efficient system reconfiguration. Other properties of balanced
hypercubes are examined. It is also shown that odd-dimensional
balanced hypercubes have smaller diameters than that of standard
hypercubes. As an application of balanced hypercubes, we show a
fault-tolerant embedding of rings in balanced hypercubes.

Index Terms —Embedding, fault tolerance, hypercubes,
interconnection networks, reconfiguration.

———————— ✦ ————————

1 INTRODUCTION

HYPERCUBES, as one of the popular structures for multicomputers,
have received much attention over the past decade. The hypercube
structure offers a rich interconnection with a large bandwidth and
a short (logarithmic) diameter. A number of hypercube machines
have been implemented [4], since the advent of Cosmic Cubes at
Caltech. To improve some desirable properties, variations of the
hypercube structure have been proposed in the literature ([1], [3],
[11]). Most of the hypercube variations focus on reducing diameter
and/or message traffic.

As the number of processors in a system increases, the prob-
ability of system failure can be expected to be quite high unless
specific measures are taken to tolerate faults within the system.
Therefore, a major goal in the design of such a system is fault tol-
erance. These systems are made fault-tolerant by providing re-
dundant or spare processors and/or links [8]. When an active
processor (where tasks are running) fails, its tasks are dynamically
transferred to spare components. The objective is to provide an
efficient reconfiguration by keeping the recovery time small. In a
multicomputer system, there are two types of communication in a
reconfiguration process:

1) fault status exchange, which is used for each node to broad-
cast or to obtain some global fault information; and

2) task migration, in which tasks are actually moved around,
and which involves more data movements.

It is highly desirable that the reconfiguration process is a decen-
tralized and local one, so fault status exchange and task migration
can be reduced or eliminated.

A configuration process is used to recover from faults while still
maintaining the quality of the initial embedding. The communica-
tion cost of a reconfiguration process can be high due to the migra-
tion of a large number of tasks. To obtain a good initial mapping
while still maintaining an efficient reconfiguration after the occur-
rence of faults, three integrated components need to be considered:

1) the topology of the target machine,
2) the initial embedding, and
3) the reconfiguration process.

Unfortunately, most of current existence approaches cannot
handle this issue effectively. Most approaches concentrate on only
one or two of the above components. One approach to achieve
fault tolerance is to introduce spare nodes and/or links to hyper-
cubes. Although this approach can reconfigure a system efficiently
and avoid global task migration, the main problem is that all the
spares are dedicated ones and they are normally not treated as
part of the system. (If spares are treated as part of the system, then
many desirable topological properties of the original system are
lost.) A similar approach [2] also uses additional nodes and recon-
figuration is performed through a series of automorphic operations
that transform the task graph into a different embedding such that
faulty nodes can be avoided. This approach is theoretically sound
but is too expensive to be practical, because each operation corre-
sponds to a task migration.

Another approach [13] exploits the inherent redundant proces-
sors and/or links in hypercubes to achieve fault tolerance; that is,
no extra processors and/or links are added to the structure of the
networks (thus all the desirable features are still maintained), but
instead save some spare processors intentionally in the initial em-
bedding such that, when faults occur, the faulty processors can be
replaced by spare ones. However, hypercubes cannot effectively
support an efficient reconfiguration process, especially in multi-
ple-fault cases.

Our proposed work is in line with the later approach. Our ob-
jective is to find an embedding approach that is easy to recover
from faults. The concept of consistently recoverable embedding is
proposed. This approach provides a uniform and fast recovery
independent of the number and location of faults. Moreover, all of
the reconfigurations are local, i.e., tasks are migrated from one
processor to one of its neighboring processors. This embedding
provides a convenient vehicle for implementing a distributed re-
configuration and minimizing reconfiguration steps.

The balanced hypercube [6], proposed by the authors, is a variant
of the hypercube structure that can support consistently recover-
able embedding. Its desirable properties are similar to those in the
standard hypercube. In fact, balanced hypercubes belong to a spe-
cial type of load balanced graphs [10] that can support consistently
recoverable embedding. In a load balanced graph G = (V, E), with
V as the node set and E as the edge set, for each node v there exists
another node v¢, such that v and v¢ have the same adjacent nodes
(see Fig. 1). Such a pair of nodes v and v¢ is called a matching pair.
In a load balanced graph, a task can be scheduled to both v and v¢
in such a way that one copy is active and the other one is passive.
If node v fails, we can simply shift tasks of v to v¢ by activating
copies of these tasks in v¢. All the other tasks running on other
nodes do not need to be reassigned to keep the adjacency prop-
erty, i.e., two tasks that are adjacent are still adjacent after a system
reconfiguration. Note that the rule of v and v¢ as primary and
backup are relative. We can have an active task running on node v
with its backup on node v¢, while having another active task run-
ning on node v¢ with its backup on node v. With a sufficient num-
ber of tasks and a suitable load balancing approach, we can have a
balanced use of processors in the system.

Most popular interconnection structures, including the hyper-
cube and its extensions, are not load balanced (i.e., they cannot
support consistently recoverable embedding). There is a simple
(but naive) approach to extend a regular hypercube to a load bal-
anced one: We consider two (n - 1)-dimensional hypercubes, A and
B. Within each hypercube, number the nodes from 0 to 2n

 - 1. Now
add edges between the two hypercubes so that a node v in A is

0018-9340/97/$10.00 ©1997 IEEE

————————————————

• The authors are with the Department of Computer Science and Engineering,
Florida Atlantic University, Boca Raton, FL 33431.

 E-mail: jie@cse.fau.edu.

Manuscript received April 7, 1995; revised October 16, 1995.
For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and reference IEEECS Log Number C96093.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 4, APRIL 1997 485

connected to a node v¢ in B if the same numbered node v in B is
connected to node v¢. Clearly, the resultant structure is load bal-
anced and it contains 2n nodes. However, the node degree of this
n-dimensional hypercube is 2(n - 1) and it is not partitionable, i.e.,
it cannot be partitioned into two subcubes with each being a load-
balanced graph. To make the resultant structure partitionable, the
above strategy can be used at each level of the recursive definition.
However, the node degree doubles as we increase the dimension
by one, i.e., the increasing rates of node degree and number of
nodes are the same. A similar strategy is used in defining the bal-
anced hypercube, but fewer links are used. Moreover, each bal-
anced hypercube can be partitioned into four sub-balanced hyper-
cubes. We also show that the balanced hypercube has desirable
properties very similar to those in a standard hypercube, e.g., they
have the same node degree and connectivity for the same number
of nodes. In addition, we prove that odd-dimensional balanced hy-
percubes have smaller diameters than that of standard hypercubes.

This paper is organized as follows. Section 2 defines the pro-
posed balanced hypercube. Several properties of balanced hyper-
cubes are listed in Section 3. The embedding of rings in balanced
hypercubes is also discussed in this section. We show in Section 4
a fault-tolerant embedding of rings in balanced hypercubes that
uses consistently recoverable embedding as an application of bal-
anced hypercubes, and the paper concludes in Section 5.

2 BALANCED HYPERCUBES (BHS)
Let G = (V, E) be a finite, undirected graph, with the node set V
and the edge set E. Normally, a node in V represents a processor
and an edge in E corresponds to a communication link connecting
two processors. If an edge e = (v, u) Œ E, then the nodes v and u are
said to be adjacent. The degree, d(v), of node v is equal to the num-
ber of edges in G which are incident on v. The distance, d(v, u),
between nodes v and u is equal to the length (in number of edges)
of a shortest path connecting v and u. The diameter of G is the maxi-
mum distance between two nodes in G over all pairs of nodes.

A graph G is load balanced [10] if and only if for every node in G
there exists another node matching it, i.e., these two nodes have
the same adjacent nodes. Hence they are called a matching pair. A
completely connected graph with an even number of nodes is load
balanced, while several other commonly used graph structures,
such as meshes, trees, and hypercubes, are not. In the following,
we construct a special type of load-balanced graph called balanced
hypercube (BHn), where the integer n is called the dimension of the
balanced hypercube.

DEFINITION 1. An n-dimensional balanced hypercube BHn consists of 22n

nodes (a0, a1, �, ai-1, ai, ai+1, ..., an-1), where ao and ai Œ {0, 1, 2,
3} (1 £ i £ n - 1). Every node (a0, a1, ..., ai-1, ai, ai+1, �, an-1) con-
nects the following 2n nodes:

1) a a a a a ai i i n0 1 1 1 11 4+ - + -c he j mod , , , , , , , ,L L

 a a a a a a andi i i n0 1 1 1 11 4- - + -c he j mod , , , , , , , ,L L

2) a a a a a ai i
a

i n0 1 1 1 11 4 1 40+ + -FH IK- + -c h b ge j mod mod, , , , , , , ,L L

a a a a a ai i
a

i n0 1 1 1 11 4 1 40- + -FH IK- + -c h b ge j mod mod, , , , , , , ,L L

For convenience, we assume that all the arithmetic operations

on indices of nodes in BHn are four-modulated. Fig. 2 shows two

graphs BH1 and BH2. Fig. 3 shows an incomplete BH3 which con-

sists of four BH2s, where nodes in each of BH2s are connected as in

a complete BH1. However, connections among nodes from differ-

ent BH2s are incomplete in Fig. 3, where only nodes (0, 0, 0), (1, 0, 0),

(2, 0, 0), and (3, 0, 0) have complete connections. In BHn, the first

element a0 of node (a0, a1, �, ai-1, ai, ai+1 �, an-1) is named inner

index, and the other elements ai (1 £ i £ n - 1) outer indices. Any

node in BHn has two types of adjacent nodes:

1) inner (based on 1 in Definition 1) and
2) outer (based on 2 in Definition 1).

Clearly, every node in BHn has two inner adjacent nodes and 2n - 2
outer adjacent nodes. For example, in BH3 shown in Fig. 3, node
(1, 3, 2) has inner index 1 and two outer indices: 3 and 2. By add-
ing 1 to and subtracting 1 from the inner index of node (1, 3, 2),
two inner adjacent nodes, (0, 3, 2) and (2, 3, 2), are derived. Since
the inner index of (1, 3, 2) is odd, the four outer adjacent nodes (0, 2, 2),
(2, 2, 2), (0, 3, 1), and (2, 3, 1) can be determined by subtracting one
of outer indices by 1 and by changing the inner index by 1.

Fig. 1. Nodes v and v ¢ that share the same set of adjacent nodes.

(a)

(b)

Fig. 2. Structures of two balanced hypercubes: (a) BH1, and (b) BH2}

486 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 4, APRIL 1997

An n-dimensional balanced hypercube is very similar to a

2n-dimensional hypercube Q2n in terms of their topological proper-
ties. Actually, these two structures share similar features in terms
of symmetry and connectivity, as will be discussed in the follow-

ing section. Based on Definition 1, it is clear that BHn can be de-

rived from four BHn-1s by adding a new dimension as the nth

outer index of every node in BHn. If we name nodes with odd in-
ner index odd nodes (represented as black nodes as in Figs. 2 and 3),
similarly nodes with even inner index are named even nodes

(represented as white nodes), we redefine BHn as follows:

DEFINITION 2. BHn is constructed hierarchically as follows:

1) BH1 is constructed from four nodes connected as a ring. These
four nodes are labeled 0, 1, 2, 3, respectively.

2) BHk+1 is constructed from four BHks. These four BHks are la-
beled BH BH BH BHk k k k

() () () (), , , ,0 1 2 3and where each node in

BH ik
i() 0 3£ £b g has i attached as the new kth outer index.

Every node v = (a0, a1, �, ak-1, i) in BH ik
i() 0 3£ £b g has two

extra connections:

a) BHk
i()+1 : (a0 + 1, a1, �, ak-1, i + 1) and (a0 - 1, a1, �, ak-1,

i + 1) if a0 is even.

b) BHk
i()-1 : (a0 + 1, a1, �, ak-1, i - 1) and (a0 - 1,a1, �, ak-1,

i - 1) if a0 is odd.

Clearly, Definitions 1 and 2 are equivalent. The addressing
schemes used in both definitions are quaternary. It is easy to re-
place the quaternary representation by binary one as is used in the
hypercube addressing scheme. This can be done by replacing
every quaternary number by two binary numbers.

3 PROPERTIES OF BALANCED HYPERCUBES

In this section, we list some basic properties of the balanced hy-
percube BHn. We compare these properties with the ones of the

comparable hypercube, i.e., 2n-dimensional hypercube Q2n. Due to
the space limitation, all the proofs to the following properties are
omitted, see [6] for detail.

PROPERTY 1. BHn is a load balanced graph, and nodes in BHn can be
partitioned into a set of matching pairs v = (a0, a1, �, an-1) and
v¢ = (a0 + 2, a1, �, an-1).

For example, two nodes (0, 0, 0) and (2, 0, 0) form a matching
pair in BH3, because they have the same adjacent node set (1, 0, 0),
(3, 0, 0), (1, 1, 0), (3, 1, 0), (1, 0, 1), (3, 0, 1).

PROPERTY 2. BHn has 22n nodes, each of which has 2n adjacent nodes.

This property states that BHn and Q2n have the same number of
nodes and node degree. The following property shows that BHn
and Q2n also have the same symmetry property.

PROPERTY 3. BHn is a symmetric graph, i.e., for any pair of nodes v and
u in BHn there is an automorphism T of BHn such that T(v) = u.

If v = (a0, a1, �, an-1) and u = (b0, b1, �, bn-1), then the automor-
phism T can be defined as:

T w b c a b c a b c aa a
n

a
n nb g b g c h b g c h b g c he j= + - - + - - + - -- - -0 0 0 1 1 1 1 1 11 1 10 0 0, , ,L

for any node w = (c0, c1, �, cn-1) in BHn.

PROPERTY 4. BHn is a bipartite graph, i.e., its node set can be divided
into two disjoint subsets such that any edge must link two nodes
from different subsets.

One of the desirable properties of the 2n-dimensional hyper-
cube Q2n is the existence of 2n node-disjoint paths between any
pair of nodes. BHn has the same property as shown in the following.

PROPERTY 5. BHn is 2n-connected, i.e., for any pair of nodes in BHn
there exist 2n disjoint paths between them.

For example, in BH2, there are 2 * 2 = 4 node-disjoint paths
from node (1, 2) to node (3, 3): path 1: (1, 2) Æ (2, 2) Æ (3, 3); path 2:
(1, 2) Æ (0, 2) Æ (3, 3); path 3: (1, 2) Æ (2, 1) Æ (1, 1) Æ (2, 0) Æ (3, 0)
Æ (2, 3) Æ (3, 3); path 4: (1, 2) Æ (0, 1) Æ (3, 1) Æ (0, 0) Æ (1, 0) Æ
(0, 3) Æ (3, 3).

The diameter of a graph is an important measure of communi-
cation delay. Normally, the shorter the diameter the lower the
communication delay. One of the desirable properties of the hy-
percube structure is its short (logarithmic) diameter. Property 6
shows that BHn has a diameter no longer than that of a
2n-dimensional hypercube Q2n.

PROPERTY 6. The diameter of BHn is 2n when n is even or n = 1, and is
2n - 1 when n is odd other than 1.

Note that a 2n-dimensional hypercube Q2n has a diameter of 2n.
Therefore, BHn has a smaller diameter than Q2n when n (n > 1) is
odd. In addition to diameter, average distance and traffic density are
important among general measures of a multicomputer structure.
Since BHn is a symmetric graph, the average distance can be de-
fined as:

d BH d vn n

nv BHn

c h b g=
F
H
GG

I
K
JJÂ1

2
0 0 02 , , , ,L
1 24 34

all node in

Similarly, the traffic density of BHn is

td BH
d BH

nn
n

n

nc h c h b g c h e j
=

*
=

*

*
average distance number of nodes

number of links

2

2

2

2

Tables 1 and 2 show the average distance and the traffic density
of balanced hypercubes, respectively. Note that the average distance
of a 2n-dimensional hypercube is d Q nn2c h = and the traffic density of

a 2n-dimensional hypercube is td(Q2n) = 1. Therefore, both d BHnc h
and td(BHn) are very close to d Q n2c h and td(BHn), respectively.

Fig. 3. The structure of BH3.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 4, APRIL 1997 487

TABLE 1
AVERAGE DISTANCES OF BHS

the size n d BHnc h the size n d BHnc h
1 1.000000 11 11.072663
2 2.250000 12 12.066152
3 3.156250 13 13.060060
4 4.140625 14 14.054409
5 5.126953 15 15.049202
6 6.114258 16 16.044432
7 7.103638 17 17.040075
8 8.094727 18 18.036113
9 9.086861 19 19.032518
10 10.079563 20 20.029262

TABLE 2
TRAFFIC DENSITIES OF BHS

the size n td(BHn) the size n td(BHn)
1 1.000000 11 1.006606
2 1.125000 12 1.005513
3 1.052083 13 1.004620
4 1.035156 14 1.003886
5 1.025391 15 1.003280
6 1.019043 16 1.002777
7 1.014805 17 1.002357
8 1.011841 18 1.002006
9 1.009651 19 1.001711
10 1.007965 20 1.001463

BHn also supports efficient routing. An optimal routing algo-
rithm has been presented in [6] as well as an area efficient layout
of balanced hypercubes in [5].

In general, the ability to embed basic interconnection networks
is one of the important measures of a newly proposed network.
More formally, an embedding f of an application graph Ga = (Va, Ea)
into a host graph Gh = (Vh, Eh) is an injective function from Va to
Vh.

1 The expansion of f is |Vh|/|Va|. The dilation of f is
max{d(f(vi), f (vj))}, for every (vi, vj) Œ Ea. The expansion is a meas-
ure of processor utilization. The dilation represents the maximum
communication delay between the communicating nodes. The
load of an embedding is the maximum number of processors of Ga

assigned to any processor of Gh. Throughout the paper we only
consider embedding with unit dilation and load.

We use embedding rings in balanced hypercubes as an exam-
ple to show the embeddability of balanced hypercubes. Embed-
ding of other topologies, such as trees, is studied in [12]. To embed
rings in balanced hypercubes, we need to find, for every node v,
the next adjacent node fn(v) on the ring. The idea is to find directly
spanning rings in BH1 and BH2, and use the spanning ring in BH2
as the building block to construct a spanning ring in BH3, and so
on. In general, a spanning ring in BHn is constructed from four
spanning rings in four BHn-1s. This is done by breaking each span-
ning ring and then connecting each broken ring using four links
that connect these four BHn-1s. The following theorem shows one
of the possible solutions based on the above idea.

THEOREM 1. A map fn on the node set of an n-dimersional balanced hy-
percube, BHn = (Vn, En), is constructed based on the following
three rules:

1)

f a a a

a a a where l n

n
l

l l n

l
l l n

2 2 2 0

1 2 2 0 1 0 1

2 3 1

2 3 1

, , , , , , , ,

, , , , , , , , , ,

L123 L

L123 L

+ + -

+ + -

F
HG

I
KJ

=

+
F
HG

I
KJ

£ < -

2) fn(0, a1, a2, �, an-1) = (3, a1 + 1, a2, �, an-1), and

3) fn(i, a1, a2, �, an-1) = (i - 1, a1, a2, �, an-1), if node (i, a1, a2,

�, an-1) Œ Vn does not match 1 or 2 as above.

The set of directed edges ¢ = ŒE v f v v Vn n n, ;b gc ho t forms a Hamil-

tonian cycle Cn in BHn.

PROOF. In the definition of map fn, rule 3 is used to construct a ring
in each inner cube of four nodes. Therefore, when n = 1, the

Hamiltonian cycle C1 is generated directly by applying rule

3. Rules 2 and 3 together are used to construct a ring in BH2.
Rule 2 supersedes rule 3 in order to break and connect rings

in four BH1s. The Hamiltonian cycle C2 generated by using
rules 2 and 3 is shown in Fig. 2b. Rule 1 is used recursively

to break and connect spanning rings in each subcube BHl, 2

£ l £ n - 1, of BHn. By using the induction on the dimension

size n of BHn, we show the following fact:

¢ = ŒE v f v v Vn n n, ;b gc ho t forms a Hamiltonian cycle Cn in BHn,

and edge

1 2 2 0 2 2 2 0
2 2

, , , , , , , , , ,L123 L123
n n

nE
- -

F
HG

I
KJ
F
HG

I
KJ

F
H
GG

I
K
JJ Œ ¢

for n ≥ 2. When n = 2, C2 can be easily constructed in BH2
and the edge ((1, 0), (2, 0)) Œ C2. Assume that when n = l (l ≥ 2),
the fact is true, we verify it for n = l + 1. Using the following
equations:

f v i

f v i v

i

l

l
l

l

+
-

-

=

π
F
HG

I
KJ

+
F
HG

I
KJ

R

S
|||

T
|||

1
2

2

2 2 2 0

1 2 2 0 1

,

, , , , ,

, , , , ,

b g
b gc h if

otherwise

L123

L123

we see that fl+1 keeps all the links in Cl (formed by fl) except
the edge

1 2 2 0 2 2 2 0
2 2

, , , , , , , , , , ,L123 L123
l l

i i
- -

F
HG

I
KJ
F
HG

I
KJ

F
H
GG

I
K
JJ .

Thus, Cl+1 is constructed from four Cls as shown in Fig. 4,

where Cl
ib g is the Hamiltonian cycle Cl formed by fl in BHl

ib g ,

for 0 £ i £ 3. Therefore, when n = l + 1, ¢ = ŒE v f v v Vn n n, ;b gc ho t
forms a Hamiltonian cycle Cn in BHn. Clearly the edge

1 2 2 0 2 2 2 0
2 2

, , , , , , , , ,L123 L123
n n- -

F
HG

I
KJ
F
HG

I
KJ

F
H
GG

I
K
JJ

is still in the cycle Cn. �

COROLLARY. Any rings of size of 22l, 1 £ l £ n, can be embedded in BHn.

Based on the proof of Theorem 1, we can always construct a
spanning ring of size 22l in each subcube BHl of BHn. For example,
rings with 4, 16, 64, 256 can be embedded in BH4 which consists of1. Although we can define a more general concept of embedding by

replacing the injective function by the regular function in the defini-
tion, it is beyond the scope of this paper.

488 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 4, APRIL 1997

28 = 256 nodes. In the next section, we show that any ring of size
22l+1, 1 £ l £ n - 1, can also be embedded in BHn.

Fig. 4. Four Cls form a Cl+1.

4 AN APPLICATION OF BHS: FAULT-TOLERANT RING
EMBEDDINGS

We study fault-tolerant embeddings of rings as a possible applica-
tion of balanced hypercubes. In a regular embedding, once we
have mapped an application graph into a host graph, it is desirable
that if the host has a fault, it can reconfigure itself so that the ap-
plication graph can continue operation with minimum interrup-
tion while still maintaining the same or near the same embedding
quality. Therefore, a good embedding should not only try to opti-
mize the initial embedding, by minimizing dilation, congestion,
and load, but also should be easy to recover from faults and still
maintain certain level of quality of the embedding. Such type of
fault-tolerant embeddings are called recoverable embeddings.

We consider embeddings with unit dilation and load in both
the initial embedding f and the recovered embedding f¢. More
specifically, we study k-fault-tolerant t-step-recoverable embeddings,
or (k, t) embeddings [7], which means that a maximum of t steps
are required to recover a system with k faulty processors and the
recovered embedding is isomorphic to the initial embedding.

Efficient system reconfiguration is the key in achieving an effi-
cient recoverable embedding. Basically, in a system reconfigura-
tion faulty components are disconnected from the system and
spares are included. We use the scheme proposed in [14], where
control is distributed throughout the system. In some other recon-
figurations, it is usually assumed that reconfiguration and recov-
ery are directed by a central or global supervisor, which is often
the most vulnerable part of the system. In addition, centralized
control is not practical in a large multicomputer system. In distrib-
uted reconfiguration, depending on how tasks are actually moved,
the reconfiguration strategies can be divided into:

1) local reconfiguration, which involves only local task move-
ments, and

2) global reconfiguration, which involves global task movements.

Ideally, we want a distributed reconfiguration in which reconfigu-
ration process is distributed, there is no scattered information

about fault distribution, and all the reconfigurations are local ones
without global data movements. Moreover, we require that such a
process can handle multiple faults and ideally be independent of
the structure of the application graph.

Unfortunately, most of the existing topologies cannot effec-
tively support an efficient reconfiguration process, especially in
multiple-fault cases. For example, consider embedding a ring into
a hypercube; results [9] show that there exists an initial embedding
such that any single fault can be recovered in one step. However,
we will show (in Theorem 2) that there does not exist an embed-
ding that can recover any simple and double faults in one and two
steps, respectively. Recent results [13] show that there exists dis-
tributed reconfiguration (with degradation of the quality of the
initial embedding) of multiple faults in hypercubes. However, more
than k steps are used to recover from k faults and different recon-
figuration processes have to be employed for different guest graphs.

We propose here the concept of consistently recoverable embed-
ding, or consistent-(k, k) embedding, which provides a uniform (i, i)
embedding with 1 £ i £ k for a given positive integer k; that is, it
provides a uniform recoverable embedding which is independent
of the number and location of up to k faults. We first formally de-
fine the concept of the consistent-(k, k) embedding, then we propose
a consistent-(k, k) embedding of a ring in a balanced hypercube.
The detailed discussion of the usefulness of consistent-(k, k) em-
bedding and consistent-(k, k) embedding of other topologies, such
as trees, are studied in [12].

DEFINITION 3. A consistent-(k, k) embedding is an (i, i) embedding for
all i such that 1 £ i £ k, where k is a given positive integer, and
each node has a distinct spare. If each recovery step is defined as
replacing each faulty node by its spare, then the resultant recov-
ered embedding is isomorphic to the initial embedding.

In the above definition, since each faulty node is replaced by its
spare in one step, a total of i steps are required in a system with i
faults, where 1 £ i £ k. Hence it is an (i, i) embedding. Also, with
each node having a distinct spare node, the configuration is inde-
pendent of the number and location of up to k faults in the system.
Therefore, it is consistent. We use consistent-(*, *) embedding to
represent consistent-(k, k) embedding without setting limits on
value k, i.e., any (large) k faults can be recovered in k steps. Clearly,
conditions associated with the consistent-(k, k) embedding are
strong. The following result shows that there does not exist a con-
sistent-(k, k) (k ≥ 2) embedding of rings in standard hypercubes.

THEOREM 2. There does not exist a consistent-(k, k) (k ≥ 2) embedding of
rings in standard hypercubes.

PROOF. It is sufficient to show that there does not exist a consis-
tent-(2, 2) embedding, because based on Definition 3 any
consistent-(k, k) embedding (k > 2) implies a consistent-(2, 2)
embedding. Suppose nodes u, v, w, x (see Fig. 5) in sequence
are used in the initial embedding of a consistent-(k, k) em-
bedding of a ring in a hypercube where v¢ and w¢ are spares
for v and w, respectively. (The smallest ring in a hypercube
has four nodes.) If the system has one faulty node, say v,
then the recovered embedding is obtained by replacing v
using v¢. Since this recovered embedding is isomorphic to
the initial embedding, v¢ must be adjacent to both neighbors,
u and w, of v. Similarly, w¢ must be adjacent to both v and x.
Now, if the system has two faulty nodes, v and w, based on
the definition of consistent-(k, k) embedding, v¢ and w¢ are
used to replace faulty nodes v and w, respectively. Since the
recovered embedding is isomorphic to the initial embed-
ding, nodes v¢ and w¢ are connected (see Fig. 5). This implies
that there are three node-disjoint paths of length two (via
nodes u, w, and w¢, respectively) between nodes v and v¢.
This contradicts the hypercube property that there are only l

IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 4, APRIL 1997 489

node-disjoint paths of length l between two nodes separated
by Hamming distance l in a hypercube. �

Fig. 5. The connection requirement of a consistent-(k, k) embedding of
a ring.

TABLE 3
THE SPARE NODE SET OF A RING OF EIGHT PROCESSORS IN BH2

node v 1 2 3 4 5 6 7 8
imaging

node
f(v)

(0,0) (1,0) (0,3) (1,3) (0,2) (1,2) (0,1) (1,1)

spare
node
f¢(v)

(2,0) (3,0) (2,3) (3,3) (2,2) (3,2) (2,1) (3,1)

Using a similar approach, we can prove that there does not ex-
ist a consistent-(k, k) (k ≥ 1) embedding of any nontrivial binary
trees in standard hypercubes.

In balanced hypercubes, the reconfiguration method associ-
ated with a consistent-(k, k) embedding can be simply expressed
as follows: Whenever a processor (a0, a1, ..., an-1) fails, this proc-
essor should be replaced by its matching node, i.e., processor (a0 + 2,
a1, ..., an-1).

The spare (matching) node set of a ring of eight processors in
BH2 of Fig. 6a is shown in Table 3. To find a consistent-(k, k) em-
bedding of an application graph in a balanced graph, as long as we
use at most one node in each matching pair in the initial embed-
ding, the result is guaranteed consistently recoverable and there is
no limit on the number of faults (k) to be tolerated; that is, the em-
bedding is consistent-(*, *). A consistent-(*, *) embedding of rings
in BHs with an expansion two (which corresponds to an embed-
ding with the best possible system utilization) is shown as follows:

THEOREM 3. In an n-dimensional balanced hypercube, BHn = (Vn, En),

we define a map gn on the node subset

Vn¢ = {(a0, a1, �, an-1) Œ Vn; a0 Œ {0, 1}}

as follows:

1) g a a an
l

l l n0 2 2 0 2 3 1, , , , , , , ,L123 L+ + -

F
HG

I
KJ

=

1 2 2 0 1 0 12 3 1, , , , , , , , , ,L123 L
l

l l na a a where l n+ + -+
F
HG

I
KJ

£ < -

2) gn(0, a1, a2, �, an-1) = (1, a1, a2, �, an-1), if node (0, a1, a2, �,

an-1) does not match 1) above, and
3) gn(1, a1, a2, �, an-1) = (0, a1 - 1, a2, �, an-1).

The set of edges ¢¢ = ŒE v g v v Vn n n, ;b gc ho t forms a cycle with

2 * 4n-1 nodes in BHn.

This theorem can be proved in a similar way used in proving
Theorem 1. The following equations are useful to construct such a
proof:

g v i

g v i v

i

k

k
l

l

+
-

-

=

π
F
HG

I
KJ

+
F
HG

I
KJ

R

S
|||

T
|||

1
2

2

0 2 2 0

1 2 2 0 1

,

, , , , ,

, , , , , ,

b g
b gc h if

otherwise

L123

L123

and

g i i

g i i
2

2

0 1

1 0 1

, ,

, ,

b g b g
b g b g

=

= -

R
S|
T|

It is clear that map gm provides a consistent-(*, *) embedding of
rings in balanced hypercubes. Fig. 6a shows a consistent-(*, *)
embedding of a ring of eight processors in BH2.

COROLLARY. For any rings of size 22l+1, 1 £ l < n, there exists a consis-
tent-(*, *) embedding in BHn.

Efficient system reconfiguration is the major advantage of the
proposed consistent-(k, k) embedding over the existing ones. Be-
cause the reconfiguration is consistent, there is no need for each
local supervisor to know the global information of the number and
location of faulty processors. Therefore, the reconfiguration is
much simpler than the one used in a regular recoverable embed-
ding where a certain format of global information collection proc-
ess is required. More specifically, in the decentralized reconfigu-
ration method, each processor is assumed to be capable of acting
as a local supervisor of reconfiguration and recovery. It is nor-

(a)

(b)

Fig. 6. The consistent-(k, k) embedding of a ring in BH2: (a) the initial
embedding before the failure of nodes (1,0) and (0,2), and (b) the re-
covered embedding.

490 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 4, APRIL 1997

mally assumed that the processor that detects a faulty node acts as
a local supervisor. With the consistent-(k, k) embedding, one re-
configuration step is required for each faulty processor. In addi-
tion, based on the topological property of the balanced hypercube,
each local supervisor is adjacent to both the node to be replaced
(the faulty processor) and the replacing node (the matching node
of the faulty processor). This condition holds no matter which
neighbor of the faulty node detects the faulty and acts as a local
supervisor. For the example of Fig. 6a, suppose nodes (1, 0) and (0, 2)
are faulty and they are detected by nodes (0, 0) and (1, 3), respec-
tively. Then, node (0, 0) acts as a local supervisor to replace (0, 0)
by its matching node (3, 0). Note that (3, 0) is adjacent to (0, 0).
Similarly, node (1, 3) acts as another local supervisor to replace (0, 2)
by (2, 2). The result is shown in Fig. 6b. Suppose these faulty nodes
are detected by the other two neighbors, e.g., (0, 3) and (1, 2). The
same replacing nodes will be used and both local supervisors are
still adjacent to their respective replacing nodes.

5 CONCLUSION

We have proposed the balanced hypercube structure, which is a
variation of the standard hypercube. The basic properties of bal-
anced hypercubes have been compared to those of hypercubes.
Results show that balanced hypercubes still maintain many desir-
able properties of hypercubes. In addition, balanced hypercubes
have been shown to be superior over the hypercubes in the fol-
lowing two aspects:

1) Balanced hypercubes support an efficient reconfiguration
without changing the adjacency relationship among tasks,
and

2) An odd-dimensional balanced hypercube has a smaller di-
ameter than the comparable hypercube.

Ring embedding, including a fault-tolerant ring embedding using
consistently recoverable embedding, has also been discussed. Re-
sults confirm that the balanced hypercube has better fault-tolerant
embedding capability than the standard hypercube. We believe
that the proposed consistent recoverable embedding is a practical
and useful solution to minimize reconfiguration time in a decen-
tralized multicomputer system. The balanced hypercube has been
proved to be a suitable structure for supporting this method.

REFERENCES
[1] L.N. Bhuyan and D.P. Agrawal, “Generalized Hypercube and

Hyperbus Structures for a Computer Network,” IEEE Trans. Com-
puters, vol. 32, no. 4, pp. 323–333, Apr. 1984.

[2] S. Dutt and J.P. Hayes, “Design of Fault-Tolerant Systems Using
Automorphisms,” J. Parallel and Distributed Computing, vol. 12,
pp. 249–268, 1991.

[3] A. El-Amawy and S. Latifi, “Properties and Performance of folded
hypercubes,” IEEE Trans. Parallel and Distributed Systems, vol. 2,
no. 1, pp. 31–42, Jan. 1991.

[4] J.P. Hayes and T.N. Mudge, “Hypercube Supercomputers,” Proc.
IEEE, vol. 77, no. 12, pp. 1,829–1,841, Dec. 1989.

[5] K. Huang and J. Wu, “Balanced Hypercubes,” Technical Report
CSE-92-6, Dept. of Computer Science and Eng., Florida Atlantic
Univ., Feb. 1992.

[6] K. Huang and J. Wu, “Area Efficient Layout of Balanced Hyper-
cubes,” Int’l J. High Speed Electronics and Systems, vol. 6, no. 4,
pp. 631–646, 1995.

[7] T.C. Lee, “Quick Recovery of Embedding Structures in Hyper-
cube Computers,” Proc. Fifth Distributed Memory Computing Conf.,
pp. 1,426–1,435, 1990.

[8] T.C. Lee and J.P. Hayes, “One-Step-Degradable Fault-Tolerant
Hypercubes,” Proc. Fourth Conf. Hypercubes, pp. 94–97, Mar. 1989.

[9] J. Liu, T.J. Sager, and B.M. McMillin, “An Improved Characteri-
zation of 1-step Recoverable Embeddings: Rings in Hypercubes,”
Technical Report CS-92-07, Univ. of Missouri at Rolla, Nov. 1992.

[10] N. Sherwani, A. Boals, and H. Ali, “Load Balancing Graphs,”
Congressus Numerantium, vol. 73, pp. 205–214, 1990.

[11] N.F. Tzeng and S. Wei, “Enhanced Hypercubes,” IEEE Trans.
Computers, vol. 40, no. 3, pp. 284–294, Mar. 1991.

[12] J. Wu and K. Huang, “Fault-Tolerant Ring Embedding in Bal-
anced Hypercubes,” Technical Report CSE-93-5, Dept. of Com-
puter Science and Eng., Florida Atlantic Univ., Jan.1993.

[13] P-.J. Yang, S-.B. Tien, and C.S. Raghavendra, “Reconfiguration of
Rings and Meshes in Faulty Hypercubes,” J. Parallel and Distrib-
uted Computing, vol. 22, pp. 96–106, 1994.

[14] R.M. Yanney and J.P. Hayes, “Distributed Recovery in Fault-
Tolerant Multiprocessor Networks,” IEEE Trans. Computers, vol. 35,
pp. 871–879, 1986.

