Target Tracking with Monitor and Backup Sensors in Wireless Sensor Networks

Md. Zakirul Alam Bhuiyan\(^1\), Guojun Wang\(^1,2,*\), Jie Wu\(^2\)

\(^1\) School of Information Science and Engineering
Central South University, Changsha, 410083, China
\(^2\) Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431, USA

Abstract—Over the past few years, developing an efficient target tracking system in wireless sensor networks (WSNs) has become a hot research topic. We propose Target Tracking with Monitor and Backup sensors in WSNs (TTMB) to increase the energy efficiency of the network and decrease target capturing time while considering the effect of a target’s variable velocity and direction. The approach is based on a face routing and prediction method. We use a state transition strategy, a dynamic energy consumption model, and a moving target positioning model to reduce energy consumption by requiring only a minimum number of sensor nodes to participate in communication, transaction, and sensing for target tracking. Two sensor nodes, namely, ‘Monitor’ and ‘Backup’, are employed for target tracking for each period of time. For the whole time of target tracking, a linked list of monitor and backup sensors are formed. If either monitor or backup sensor fails, this approach can still be survivable. Simulation results compared with existing protocols show better tracking accuracy, faster target capturing speed, and better energy efficiency.

Index Terms - Wireless sensor networks, target tracking, wakeup mechanism, planarization, energy efficiency.

I. INTRODUCTION

A sensor is a device that detects changes in the environment and records the changes. Many sensors can collaborate to form a wireless sensor network (WSN) which can be used to monitor large areas effectively. One of the most important areas where the advantages of WSNs can be exploited is for tracking mobile targets. Typical examples include establishing survivable military surveillance systems, environmental and industrial monitoring, personnel and wildlife monitoring systems requiring tracking schemes, capable of deducing kinematic characteristics such as position, velocity, and acceleration of single or multiple targets of interest [1].

We propose a novel lightweight approach to implementing target tracking in WSNs. So far, many protocols have been proposed in the literature, while some protocols are designed to increase the lifetime of target tracking wireless sensor networks [1], some others enable good localization methods with low energy consumption [2] and put forward some critical issues such as system robustness, scalability, and fault tolerance. Many of the protocols employ a lot of sensors for target detection and data transmission at the same time. If the number of active sensors is large, it means the tracking accuracy can be high; however, with high energy consumption. Our approach relies on accumulated information from a small number of sensor nodes. The approach can locate and track the target in a sensing area effectively. They can be achieved by employing low complexity prediction based cooperative tracking that compares the data received from different nodes. The comparative results with existing protocols show better tracking accuracy, faster target capturing speed, and better energy efficiency.

The basic idea of our tracking approach is as follows. An entity that intends to track a target is called a tracker. A tracker is assumed to be a single generic source such as a mobile user or a respective authority. A target can be an enemy vehicle, an intruder, or a moving fire. Each sensor in the network has the capability of sensing, communicating, and computing. One of the active and working sensors is elected as a monitor, and another one is elected as a backup for fault tolerance concern. In the case that the monitor has any problem due to any reason, the backup will take the role of the monitor.

The monitor can work at request of the tracker. When the tracker intends to follow a target, it queries the sensor network. We assume that each sensor knows all its neighbors in a spatial neighborhood—known as a face in face routing [3-4]. All the sensors in the network are periodically clock synchronized to be awake, active, or inactive. When a sensor receives a query request, it checks whether it is close to the target, if it is, it then becomes a monitor and informs the tracker. The tracker then moves toward the monitor and queries for the target information. If the target is still within the face, the monitor keeps tracking the target; at the same time, the monitor elects the next possible monitor as the new monitor by using our proposed prediction mechanism. The monitor also elects a new backup for fault tolerance concern. The new monitor and the new backup are two common sensors of both the current face and one of its adjacent faces. If the target has already moved out of the area, the monitor informs the tracker about the new monitor, and the tracker moves toward the new monitor.

When the monitor finishes its task, it changes its state. This is also true for the backup. In this way, a special linked list of monitor and backup sensors will be formed as time goes on. If both the monitor and the backup are viewed as one logical node at each time step of tracking, this special linked list is simply a linear link of logical nodes, which stands for the tracking route.

To sum up, this research contributes and improves a number of situations as follows.

- The monitor locally chronicles tracking information in its stack and waits for the tracker. The tracker does not need to wait for the tracking information.
The monitor does not need to transmit information to all neighbors in a face if there is no event of a target missing.

After computation, the monitor does not need to send the location information to the tracker. It informs the tracker only when it gets a request.

By directly using predicted-next-location, we aim to simplify the sensor’s calculation and minimize the volume of messages exchanged between the monitor as well as the sensors and the tracker.

The main motivation of our work is to shorten target capturing time and prevent the chance of target missing if there is any incident of node failure, routing failure, or loss of tracking. In real WSNs, node or link failure is often possible. The failures may be caused by software or hardware faults, environmental impairment, or battery deprecation. In general, a node can be unreachable when such a failure event happens, which may cause partitioning of the network, but can be overcome, for example by avoiding the link and establishing a new link to another node. In this paper, we propose the Target Tracking with Monitor and Backup sensors (TTMB) protocol in WSNs to avoid unprocessed failures through the cooperation of sensors. More specifically, if there is a missing or failure event, we allow neighbor sensors close to the monitor in the face to cooperate. Even in this state, if the target is not sensed, we allow all the neighbors in the face to relocate the target. If the target is still not sensed, we allow all the neighbor sensors in close proximity of the face to relocate the target. Even when all the neighbors fail, TTMB reverts to the initial state.

The rest of the paper is structured as follows. We review the related work in Section II. In Section III, we give our proposed system model. Section IV illustrates the overview and design of the proposed protocol. Performance evaluation is conducted in Section V. Finally, Section VI concludes this paper and discusses our future work.

II. RELATED WORK

Tracking moving target using WSN technology is a thought-provoking and well-established research area [1] [5]. Although extensively researched in the past, this topic still has some important challenges that are unaddressed. In this paper, we concentrate on prediction-based cooperative target tracking in sensor networks. Some prediction-based methods [5-7] are used to predict the location of mobile targets and to allow a limited number of sensors to track a target, and the use of mobile agents for tracking [8]. Mobicast routing [3] for sensor networks is mainly designed for predicting the target’s moving direction. Tracking maneuvering mobile targets using a network of cooperative sensor nodes has attracted substantial research interest. To the best of our knowledge, this is the first work in target tracking research combining geographic routing and prediction methods. For instance, Tsai, Chu and Chen [9] have presented a target tracking protocol using sensor networks for mobile users. It is assumed that a mobile target may move in any direction with a constant speed, so the sensors need to be active in all directions. As a result, the number of active sensors is large, leading to high energy consumption. It also induces larger information collection delay, meaning that it incurs wakeup delay, resulting in a large message delay.

While all the aforementioned research efforts represent valuable contributions in managing tracking accuracy, capturing speed, and energy efficiency tradeoffs, they assume using a large number of active sensors and lack of sensor cooperation in tracking, and the constant motion of a target. Our proposed scheme for fast maneuvering and energy-aware target tracking addresses these shortcomings by considering sensor cooperation, which allows a minimal number of sensors near the target to work in both communication and sensing, and to maximize the lifetime by conserving the energy of the sensor network. Early estimation, various motion, sudden change current motion, appropriate position and velocity, and energy management are addressed by our target tracking scheme.

III. SYSTEM MODELS AND OBJECTIVES

A. Planarization Model

We assume the underlying network graph can be planarized using existing algorithms. A sensor network can be modeled as a graph $G = (V, E)$ by utilizing two well-known distributed planarization algorithms, Gabriel graph (GG) [4] and relative neighborhood graph (RNG) [11]. In GG or RNG, $u \in V$ and $v \in V$ represent sensor nodes, and there is an edge uv between u and v when they are within each other’s communication range. All edges $uv \in E$ such that there is no vertex or point w where $uw \in E$, $vw \in E$, and $||uw|| < ||uv||$ and $||vw|| < ||uv||$. We can obtain a connected planar subgraph $G' = (V, E')$ that maintains connectivity with fewer edges in both GG and RNG. The G' has no intersecting edges. When a network graph has no crossing edges, and it is not unidirectional and disconnected, the graph is planar. A planar graph consists of faces, which are enclosed polygonal regions. In equational form,

$$\forall u, v \in V : (u, v) \in E' \iff \exists w \in V : \max \{d(u, w), d(v, w)\} < d(u, v)$$

(1)

More generally, in any dimension, the GG connects any two points forming the endpoints of the diameter of an empty sphere. In equational form,

$$\forall u, v \in V : (u, v) \in E' \iff \exists w \in V : d(u, w)^2 + d(v, w)^2 < d(u, v)^2$$

(2)

In order to describe face strategy in the TTMB protocol, we can see from Figure 1 that node v_1 corresponds to 3 adjacent faces, namely, F_1, F_2, and F_3. Suppose a target is present in F_2 and v_1 is a monitor node, then F_1 and F_3 are called neighbor faces. So v_1 stores information about 3 faces that are adjacent to it in the planar subgraph - \{v_1, v_2, v_0, v_3\}, \{v_1, v_5, v_0, v_2\} and \{v_1, v_2, v_3\}. Node v_1 has only 3 neighbor nodes v_2, v_3, and v_0, but here we only consider the neighbor nodes with respect to the target position. Thus, v_1 has 2 neighbor nodes, v_0 and v_3 in F_3, called immediate neighbors. While the rest of v_1’s neighbor nodes, v_5.
and \(v_7 \) in \(F_2 \) are called distant neighbors. Similarly, node \(v_5 \) has 5 neighbor faces with 11 neighbors. If we consider all the faces and nodes corresponding to a node, the network communication cost and energy consumption will be higher. Every node is aware of its own location by using global positioning system (GPS) or other techniques [12-13]. Every node in the graph completely knows all its neighbors in the faces. This concept is inspired by geographic routing [14] and face routing [3-4] in particular.

B. State Transition and Energy Consumption Model

Putting sensors into an inactive state is the most widely-used and cost-effective technique [15-16] to prolong the application lifetime. In this work we presume a sensor node has widely-used and cost-effective technique \([15-16]\) to prolong the lifetime. The energy savings, \(E_{s,k} \), because of state transition given by the difference in the face and sleep thresholds \(T_{th,k} \) corresponding to the states \(s_k \) are computed as follows:

\[
E_{s,k} = \Delta P_1 t_i - \frac{1}{2}\Delta P_2 \left(\tau_{d,k} + \Delta P_3 \tau_{u,k} \right)
\]

\[
T_{th,k} = \frac{1}{2}\left(\tau_{d,k} + \Delta P_4 \tau_{u,k} \right)
\]

This state transition, as shown in Figure 2, takes advantage of the energy saving feature in sensor networks while the monitor and backup sensors are in active state one by one, and the other nodes typically stay in a periodic awaking or inactive state. To save energy, an energy evaluation model is followed for target detection and positioning [10]. The energy used for communication between nodes and the monitor can be categorized into two types, \(E_c \) and \(E_r \). Where \(E_c \) is the energy consumed by a sensor node for communication with the monitor. \(E_r \) is the energy needed for broadcasting data from the monitor to the node. For the case of a target moving in the sensor field during the time interval \([t_i, t_j]\), \(E(t) \) denotes the corresponding instantaneous energy consumption, \(E \) denotes the total energy consumption in the wireless sensor network, and \(E' \) denotes the energy consumption for target positioning. Assume that the number of sensors in a face or neighbor faces requested by the monitor to inform an event is \(k_q \) and the maximum number of sensors is \(k_{max} \). The difference in energy consumption is \(\Delta E = E - E' \).

\[
\Delta E = \sum_{t = t_i}^{t_j} E(t)
\]

(5)

With the proper selection of \(k_{max} \) (\(k_q < k_{max} \)), energy consumption can be greatly reduced as time goes on.

C. Mobile Target Positioning and Movement

One of the most crucial assumptions of the proposed TTMB approach is that each node in the network can locally estimate the cost of sensing, and communicating data to another node for all the tracking behaviors completed around the target without any central intervention.

The monitor can find out a target’s position, velocity and direction. Assume the target’s present location in \(oLi \) is \((x_o, y_o)\) at time \(t_i \) and \((x_{i-1}, y_{i-1})\) in previous location \(oLi \) at time \(t_{i-1} \). Then we can estimate the target’s speed \(v \) and the direction as

\[
\Delta E = \sum_{t = t_i}^{t_j} E(t)
\]

\[
\theta = \cos^{-1} \left(\frac{x_{i-1} - x_j}{\sqrt{(x_{i-1} - x_j)^2 + (y_{i-1} - y_j)^2}} \right)
\]

(7)

Using these values, the predicted location for the target \((x_{i+1}, y_{i+1})\) after a given time \(t \) is given by

\[
x_{i+1} = x_i + v \cdot t \cos \theta, \quad y_{i+1} = y_i + v \cdot t \sin \theta
\]

(8)

To be more precise, it can be shown that the target’s next location obeys a two dimensional Gaussian distribution with \((x_{i+1}, y_{i+1})\) as the mean. For the target’s speed, we assume that it differs within a range \([0, v_{max}]\). To keep prediction error to a minimum, for the target’s direction, we use a linear model based on the value of \(\theta \) that the target has a higher probability to keep the current direction than to change to another direction, and turning around (making a U-turn) has the least probability. The probability is denoted by \(p \). Figure 3(b) shows the probability that the target moves to different moving directions in a 2D field. Figure 3(c) is the probability of the model, where \(\theta (-\pi, \pi) \) and the direction of \(\theta = 0 \) is the instantaneous direction at the current time point. The probability \(p \) decreases on the side directions linearly and reaches the minimum value at the direction of \(\theta = \pi, \alpha = x_{i+1} + y_{i+1}, \alpha = -x_{i+1} + y_{i+1} \). We use the following equation to describe it.
In order to discuss detection failure, suppose \(v_5 \) is currently elected as the new monitor and \(v_7 \) is the backup; if \(o \) is not in the sensing range of \(v_5 \), \(v_5 \) may fail to detect \(o \), but in our work we assume if \(v_5 \) fails to detect, \(v_7 \) cooperates to detect \(o \). If \(v_7 \) also fails to detect due to the fact that \(o \) may change direction or because of failures, \(v_5 \) and \(v_7 \) send a detection failure message to \(v_1 \). Old monitor \(v_1 \) then sends a message to all its face neighbor nodes to cooperate in tracking \(o \). These neighbors include \(v_2, v_6, v_8 \) and \(v_3 \), except itself in \(F_2 \).

If the monitor \(v_1 \) gets a message about the presence of \(T \), it replies with \(o \)'s detection failure. If \(o \) is not detected in \(F_2 \), then \(v_1 \) sends a message to all sensors in the neighbor faces corresponding to its immediate neighbors and distant neighbors through them. After that, if \(o \) is not sensed in a face, the monitor \(v_1 \) sends a request to \(T \) to reposition \(o \). Also sends a message to the sensor network to relocate \(o \). This mechanism prevents the chance of routing failure, node failure, as well as loss of tracking. Additionally, if \(o \) unfortunately stays in a void region while \(T \) gets an \(o \) missing message, it means \(T \) cannot get the next destination information and then it can hear from the sensor, and relocate \(o \) if it receives a request after a predefined period. When \(o \) leaves the void region, it can be detected in a face, and \(T \) can obtain its location. The proposed TTMB target tracking protocol consists of two levels, one runs at each monitor and another one runs at sensor node. Both levels of protocol are message driven, which means all operations are triggered by messages received from the outside. TTMB uses a number of message types which are exchanged between the sensor, the monitor, as well as the tracker.

TABLE I. SIMULATION PARAMETER SETTINGS

<table>
<thead>
<tr>
<th>Description : Values</th>
<th>Description : Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field size: 300 m x 300 m</td>
<td>Communication range: 40m</td>
</tr>
<tr>
<td>Total number of nodes: 90</td>
<td>Sensing range: 20m (approx.)</td>
</tr>
<tr>
<td>Processor sleep (mW): 0.8</td>
<td>Velocity of the target (m/s): 0 – 20</td>
</tr>
<tr>
<td>Transmission power (mW): 720</td>
<td>Simulation per run: 1500s</td>
</tr>
<tr>
<td>Sensor activate (mW): 23</td>
<td>Receiving power (mW): 360</td>
</tr>
</tbody>
</table>
messages are exchanged. When the distance between the target can lead to long message delays when a large volume of active, and it consumes energy and incurs wakeup delay, which move in any way, so in all the ways the sensors need to be special case of target missing. In DOT, a mobile target may has no repetition of the target discovery process, except in the discovery process repetitively, however the TTMB algorithm it moves toward the obtained location and carries out the target. When a tracker obtains the location of a moving target, similar. When a tracker obtains the location of a moving target, flooding (TF), schedule flooding, and schedule updating. Our proposed algorithm is compared with TF.

We conducted extensive simulations using OMNet++ software [17] and the Mobility Framework fw2.0p3 (http://mobility-fw.sourceforge.net/). The version of OMNet++ is 3.32. We set up a basic network of 300m x 300m, where nodes are randomly deployed. The initial energy on all the nodes is 40I. The target node velocity is from 0.5 m/s to 20 m/s followed by the target movement model. Tracker node speed varies between 2 m/s, 5 m/s, 10 m/s, 15 m/s, and 20 m/s. Each experiment is run for 1,500 seconds. The settings of the simulation environment are shown in TABLE I. We design four experiments to evaluate the effects of different parameters on the protocol’s performance, keeping energy efficiency in mind. These parameters include the target speed, distance, direction, and the number of nodes.

B. Comparison with Other Protocols

In the simulations we compare our proposed protocol with dynamic object tracking (DOT) [9]. We also compare our proposed protocol with flooding-based target tracking. However, the flooding-based query method for target tracking involves broadcasting raw messages as soon as a node senses a target; then each message is broadcast in the entire network. In this way, whenever a node needs to send a message, it broadcasts the message to the entire sensor network. In our work we allow the flooding method in the initial state only for target discovery. The DOT protocol has better performance and energy efficiency than the flooding-based target tracking. There are three kinds of flooding query methods, i.e. threshold flooding (TF), schedule flooding, and schedule updating. Our proposed algorithm is compared with TF.

In DOT and TF protocols, the target discovery process is similar. When a tracker obtains the location of a moving target, it moves toward the obtained location and carries out the target discovery process repetitively, however the TTMB algorithm has no repetition of the target discovery process, except in the special case of target missing. In DOT, a mobile target may move in any way, so in all the ways the sensors need to be active, and it consumes energy and incurs wakeup delay, which can lead to long message delays when a large volume of messages are exchanged. When the distance between the target and the tracker is longer, DOT uses face-track to reach the face where the target is in. The term face-track is a path shortening method for adjusting a number of faces when the tracker positioning face is not immediately after the target positioning face, but can be at least two or three faces away. In that case DOT uses an optimal route to reach the location of the face where the target is. The drawback of the face-track is that it lets the tracker wait for a long time, though the used face-track in DOT is not the optimal track. In addition, there are more chances of target missing. In DOT, there is no consideration of when a network failure happens, although a lot of sensors are occupied to track a target at a timestamp. We have found a significant improvement for all these situations using TTMB.

C. Simulation Results

1) Study of the target capturing time (t): First, we compare the performance of TTMB protocol with DOT protocol and flooding-based tracking based on target capturing time. We calculate the time for when the target is captured for the first time. We can see from Figure 6 that the tracker can follow the target comparatively faster. When the tracker’s velocity is fast, it can capture the target in a short time. This is because the tracker does not need to use flooding often. It also does not need to adjust the face-track. The tracker does not need to wait long because the monitor predicts the next location in advance and sends the target’s information timely by means of an efficient linked list. Thus, the tracker can follow the mobile target quickly.

2) Study of the target moving speed (v): We take the target’s variable moving speed and direction into consideration by introducing target moving direction probability mentioned in the model. In order to analyze the energy consumption, we observe on the difference between our TTMB protocol and others in terms of energy consumption, as shown in Figure 7.

In the experiments, we observe the target moving with a changing speed. We change the target speed v from 2 m/s to 20 m/s. We see when the target speed is about between 5 m/s and 15 m/s, energy consumption is drastically reduced, where DOT and TF are typical. It can be seen that the TTMB approach consumes less energy than DOT and flooding based tracking, because fewer sensors are used in TTMB protocol by using the energy consumption model for tracking, and also flooding does not need to be used in a repetitive manner for discovering the target. The energy consumption is averaged by the data gathered from 50 uninterrupted simulations with different parameters. When the tracker velocity increases, average energy consumption
shown that our scheme greatly contributed to energy conservation by keeping good tracking accuracy and still achieve fast target tracking. Failure of one or a few nodes does not affect the operation of the network during target tracking due to its fault tolerance capability. This work has room for further improvements in some areas, as follows: 1) Finding a better technique for position estimation while considering error avoidance and a deeper analysis of the measurement uncertainties. 2) Investigating the issue of quality tracking vs. energy consumption of the entire network and the target missing probability vs. sensing range or moving speed and 3) Evaluation of the cost of fault tolerance in the algorithms with complex scenarios, and effect of localization errors on face routing for target tracking.

REFERENCES

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new scheme to detect and track a mobile target efficiently in wireless sensor networks. Most of the existing works were on how to track a target accurately, but used a lot of sensors to track the target. Taking the energy constraints into account, we used several practical implementation methods to exploit the energy management issues in target tracking sensor networks. Simulation results