1. (20%) (Greedy) A telecom company needs to install base stations to cover all houses along a long road. These houses can be sparsely distributed along the road. Suppose the coverage is 5 miles per station. Design an optimal solution that covers all houses using as few base stations as possible. Prove that your algorithm is optimal.

2. (20%) (Linear programming) Solve the following linear program using SIMPLEX and show all the relevant steps:

 maximize \(x_1 + 2x_2 \)

 subject to

 \(4x_1 - x_2 \leq 9 \)
 \(x_1 + x_2 \leq 8 \)
 \(5x_1 - 2x_2 \geq -3 \)
 \(x_1, x_2 \geq 0 \)

 Provide a geometric explanation of the solution by plotting the corresponding feasible region in a 2-D space.

3. (20%) (Divide-and-conquer) Suppose the only way to access a database of student GPA is through a simple query \(k \) and that the system returns the \(k \)th smallest value that it contains. Design an algorithm that finds the median GPA from two separate databases \(A \) (with \(m \) values) and \(B \) (with \(n \) values) using at most \(\Theta (\log (m + n)) \) queries. Show explicitly how your solution meets the requirement. Note that the median GPA is the \(\lceil (m + n)/2 \rceil \)th smallest value in \(A \) and \(B \).

4. (20%) (Brute-force) Let \(G = (V, E) \) be a \(k \)-nary tree with \(n \) nodes. The distance between two nodes in \(G \) is the length of the path connecting these two nodes (neighbors have distance 1). The diameter of \(G \) is the maximal distance over all pairs of nodes. Design a linear-time solution (i.e. \(\Theta(n) \)) to find the diameter of \(G \).

5. (20%) (Dynamic programming) Design an optimal solution using dynamic programming for the general coin changing problem. Let a coin of denomination \(i, 1 \leq i \leq n \), have value \(d_i \). Use the example with three coins with values 1, 4, and 6 units to illustrate the correctness of your solution by showing optimal results for changes from 1 to 10.

6. (Bonus: 20%) Quicksort can be modified to find the \(k \)th smallest element from \(n \) elements so that in most cases it does much less work than is needed to sort the set completely.

 (a) Write a modified quicksort algorithm for this purpose.
 (b) Show that when this algorithm is used to find the median, the worst case is \(\Theta(n^2) \).
 (c) Develop a recurrence equation for the average running time of this algorithm.
 (d) Analyze the average running time of the algorithm. What is the asymptotic order?