Deep Neural Network Based Malware Detection Using Two Dimensional Binary
Program Features

Joshua Saxe*
Invincea Labs, LLC
josh.saxe @invincea.com

Abstract

In this paper we introduce a deep neural network based
malware detection system that Invincea has developed,
which achieves a usable detection rate at an extremely low
false positive rate and scales to real world training exam-
ple volumes on commodity hardware. We show that our
system achieves a 95% detection rate at 0.1% false posi-
tive rate (FPR), based on more than 400,000 software bina-
ries sourced directly from our customers and internal mal-
ware databases. In addition, we describe a non-parametric
method for adjusting the classifier’s scores to better repre-
sent expected precision in the deployment environment.

Our results demonstrate that it is now feasible to quickly
train and deploy a low resource, highly accurate machine
learning classification model, with false positive rates that
approach traditional labor intensive expert rule based mal-
ware detection, while also detecting previously unseen mal-
ware missed by these traditional approaches. Since ma-
chine learning models tend to improve with larger data-
sizes, we foresee deep neural network classification models
gaining in importance as part of a layered network defense
Strategy in coming years.

1 Introduction

Malware continues to facilitate cyber attacks, as attack-
ers use malware as a key tool their campaigns. One problem
in computer security is therefore to detect malware, so that
it can be stopped before it can achieve its objectives, or at
least so that it can be expunged once it has been discovered.

Various detection approaches have been proposed, in-
cluding rule or signature based approaches, which require
analysts to hand craft rules that reason over relevant data to
make detections, and machine learning approaches, which
automatically reason about malicious and benign data to fit
detection model parameters. A middle path between these

* Authors contributed equally to the work.

978-1-5090-0319-8/15/$31.00 ©2015 IEEE

11

Konstantin Berlin*
Invincea Labs, LLC
kberlin @invincea.com

approach is the automatic generation of signatures. To date,
the computer security industry has favored manual and au-
tomatically created rules and signatures over machine learn-
ing and statistical methods, because of the low false positive
rates achievable by rule and signature-based methods.

In recent years, however, a confluence of three develop-
ments have increased the possibility for success in machine-
learning based approaches, holding the promise that these
methods might achieve high detection rates at low false pos-
itive rates without the burden of human signature generation
required by manual methods.

The first of these trends is the rise of commercial threat
intelligence feeds that provide large volumes of new mal-
ware, meaning that for the first time, timely, labeled mal-
ware data are available to the security community. The
second trend is that computing power has become cheaper,
meaning that researchers can more rapidly iterate on mal-
ware detection machine learning models and fit larger and
more complex models to data. Third, machine learning as a
discipline has evolved, meaning that researchers have more
tools to craft detection models that achieve breakthrough
performance in terms of both accuracy and scalability.

In this paper we introduce an approach that takes advan-
tage of all three of these trends: a deployable deep neural
network based malware detector using static features that
gives what we believe to be the best reported accuracy re-
sults of any previously published detection engine that uses
exclusively static features.

The structure of the rest of this paper is as follows. In
Section 2 we describe our approach, giving a description
of our feature extraction methods, our deep neural network,
and our Bayesian calibration model. In Section 3 we pro-
vide multiple validations of our approach. Section 4 treats
related work, surveying relevant malware detection research
and comparing our results to other proposed methods. Fi-
nally, Section 5 concludes the paper, reiterating our findings
and discussing plans for future work.

2 Method

Our full classification framework, shown in Fig. 1, con-
sists of three main components. The first component ex-
tracts four different types of complementary features from
the static benign and malicious binaries. The second com-
ponent is our deep neural network classifier which consists
of an input layer, two hidden layers and an output layer. The
final component is our score calibrator, which translates the
outputs of the neural network to a score that can be realis-
tically interpreted as approximating the probability that the
file is actually malware. In the remainder of this section we
describe each of these model components in detail.

| 1. Feature extraction |

String 2d histogram

Contextual byte
features

features

| PE metadata |

|| PE import features features

2. Deep neural network

Input layer, 1024 input features

Hidden layer, 1024 PReLU units

| |
| |
| Hidden layer, 1024 PReLU units |
| |
| |

Output layer, 1 sigmoid unit

| 3. Score calibration model |

| Non-parametric score distribution estimation |

| Bayesian estimation of P(malware) |

Figure 1. Outline of our malware classifica-
tion framework.

2.1 Feature Engineering

2.1.1 Byte/Entropy Histogram Features

The first set of features that we compute for input binaries
are the bin values of a two-dimensional byte entropy his-
togram that models the file’s distribution of bytes.

To extract the byte entropy histogram, we slide a 1024
byte window over an input binary, with a step size of 256
bytes. For each window, we compute the base-2 entropy of
the window, and each individual byte occurrence in the win-
dow (1024 non-unique values) with this computed entropy
value, storing the 1024 pairs in a list.

Finally, we compute a two-dimensional histogram over
the pair list, where the histogram entropy axis has sixteen
evenly sized bins over the range [0, 8), and the byte axis has
sixteen evenly sized bins over the range [0, 255). To obtain a
feature vector (rather than the matrix), we concatenate each
row vector in this histogram into a single, 256-value vector.

Our intuition in using these features is to model the con-
tents of input files in a file-format agnostic way. We have
found that in practice, the effect of representing byte val-
ues in the entropy “context” in which they occur separates
byte values that occur in the context of, for example, x86
instruction data from, for example, byte values occurring in
compressed data.

2.1.2 PE Import Features

The second set of features that we compute for input bina-
ries are derived from the input binary’s import address table.
We initialize an array of 256 integers to zero; extract the im-
port address table from the binary program; hash each tuple
of DLL name and import function into the range [0, 255);
and increment the associated counter in our feature array.

Our intuition is that import table DLLs may help our
model to capture the semantics of the external function calls
that a given input binary relies upon, thereby detecting ei-
ther heuristically suspicious files or files with a combination
of imports that match a known malware family. By hashing
the potentially large number of imported functions into a
small array, we ensure that our feature space remains fixed-
size, which is important for scalability. In practice we find
that even with a 256 valued hash function our neural net-
work learns a meaningful separation between malware and
benignware, as shown later in our evaluation.

2.1.3 String 2D histogram features

The third set of features we extract are derived from the
printable sequences of characters we extract from binaries.
To extract these features, we first extract all byte strings of
length 6 or more that are in the ASCII printable range. We
hash the strings with a hash function into the range [0, 16),
and take the log base 1.25 of each string’s length, pairing
the log length of each string with its hash.

Next, we compute a 2D, 16 by 16 histogram from these
pairs, with the hash of each string on one axis, and the log
of its length on the other. For the length axis, we start the
histogram bin bounds at length 8 and evenly space the bins
between 8 and 200, with the special case that the last bin’s
upper bound extends to infinity to capture any strings above
length 200. After we have computed this 2D histogram,
we concatenate each row vector in this histogram to form a
final, 256 length feature vector.

2.1.4 PE Metadata Features

The final set of features are derived from the numerical
fields extracted from target binary’s portable executable
(PE) packaging. The portable executable format is the stan-
dard format for executables on Windows-family operating
systems. To extract these features we extract numerical

12 2015 10th International Conference on Malicious and Unwanted Software: “Know Your Enemy” (MALWARE)

portable executable fields from the binary using the using
“pefile” Python parsing library. Each of these fields has a
textual name (e.g., “compile_timestamp”), which, similar to
the import table, we aggregate into 256-length array.

Our motivation for extracting these features is to give
our model the opportunity to identify both heuristically sus-
picious aspects of a given binary program’s packaging, and
allow it to learn signatures that capture individual malware
families.

2.1.5 Aggregation of Feature Types

To construct our final feature vector, we take the four 256-
dimensional feature vectors described above and concate-
nate them into a single, 1024-dimensional feature vector.
We found, throughout the course of our research, that this
reduction of data into a priori fixed sized small vector re-
sulted in only a minor degradation in the accuracy of our
model, and allowed us to dramatically reduce the memory
and CPU time necessary to load and train our model, as
compared to the more common approach of assigning each
categorical value to its own column in the feature vector.

2.1.6 Labeling

To train and evaluate our model at low false positive rates,
we require accurate labels for our malware and benignware
binaries. We accomplish this by running all of our data
through VirusTotal, which runs the binaries through approx-
imately 55 malware engines.We then use a voting strategy
to decide if each file is either malware or benignware.

Similar to [9], we label any file against which 30% or
more of the anti-virus engines alarm as malware, and any
file that no anti-virus engine alarms on as benignware. For
the purposes of both training and accuracy evaluation we
discard any files that more than 0% and less than 30% of
VirusTotal’s anti-virus engines declare it malware, given the
uncertainty surrounding the nature of these files. Note that
we do not filter our binary files based on any actual content,
as this could bias our results.

2.2 Neural Network

For classification, we use a deep feedforward neural net-
work consisting of four layers, where the first three 1024
node layers consist of a dropout [32], followed by a dense
layer with either, a parametric rectified linear unit (PReL.U)
activation function [19] in the first two layers, or the sig-
moid function, in the last hidden layer (the fourth layer be-
ing the prediction). We elaborate on the reasoning behind
these choices below.

2.2.1 Design

First, our choice of using deep neural network, rather than a
shallow but wide neural network, is based on the developed
understanding that deep architectures can be more efficient
(in terms of number of fitting parameters) than shallow net-
work [8]. This is important in our case, since the number
of binary samples in our dataset is still relatively small, as
compared to all the possible binaries that can be observed
on a large enterprise network, and so our sampling of the
feature space is limited. Our goal was to increase expres-
siveness of the network, while maintaining a tractable size
network that can be quickly trained on a single Amazon
EC2 node. Given our four layer neural network design, the
remaining design choices are meant to address overfitting
and improve efficacy of the backpropagation algorithm.

2.2.2 Preventing Overfitting

Dropout has been demonstrated to be a very simple and effi-
cient approach for preventing overfitting in deep neural net-
work. Unlike standard weight regularizers, such as based on
the /1 or /5 norms, that push the weights toward some ex-
pected prior distribution [16], dropout seeks weights at each
node that are complementary to weights in other nodes. The
dropout solution is potentially more resilient to imperfect or
dirty data (which is common when extracting features from
similar malware that was compiled or packed using differ-
ent software), since it discourages co-adaptation by creat-
ing multiple paths to correct classification throughout the
network. This can be viewed as implicit bagging of several
neural network models [32].

2.2.3 Speeding Up Learning

Rectified linear units (ReLU) have been shown to signifi-
cantly speedup network training over traditional sigmoidal
activation functions, such as tanh [27], by avoiding signifi-
cant decay in gradient descent convergence rate after an ini-
tial set of iterations. This slowdown is due to saturating non-
linearities in sigmoidal functions at their edges [27, 29, 19].
Using ReLU activation functions can also lead to bad per-
formance when the input values are below 0, and PReLU
activator functions are made to dynamically adjust in or-
der to avoid this issue, thus yielding significantly improved
convergence rate [19].

Initialization of weights, before training, can signifi-
cantly impact the convergence of the backpropagation algo-
rithm [18, 19]. The goal of a good initialization is to avoid
multiplicative impact of weight aggregation from multiple
layers during backpropagation. In our approach we use the
Gaussian distribution that is normalized based on the size
of the input and output of the layers, as suggested in [18].

2015 10th International Conference on Malicious and Unwanted Software: “Know Your Enemy” (MALWARE) 13

Before doing this initialization we transform our feature val-
ues by applying the base-10 logarithm to each feature value,
which we found in practice improved training performance
substantially.

2.2.4 Formal Description

Let I = {0,1,2,3} be a layer in the network, y(!~1) the
incoming values into the layer (for [= 1 those are the fea-
ture values), y(*) the output values of the layer, W() the
weights of the layer that linearly transforms n input values
into m output values, b the bias, and F(") the associated
activation vector function. The equation for [= {1, 2, 3} of
the network is

d® = -1 40
20 = WO 40,)
y = F@EY),

where - is a pointwise (elementwise) vector product, and r;
are independent samples from a Bernoulli distribution with
parameter . The r values are resampled for each batch
update during training, and h corresponds to the fraction of
nodes that are kept during each batch update [32]. Layer
[= 0 is the input layer, and [= 4 is the output layer.

For layers [= {1,2}, the activation function is the
PReLU function,
Fa) =@, l) 2)

where for some additional parameter az(-l) that is also fit dur-
ing training,
H_(
o _ [0
% 2 Z(l)

For the final layer [= 3, the activation function is the sig-
moid function,

if 2V <0,
else.

3)

. 1
Yy = Wa 4)
which produces the output of our model.
The loss for each n sized batch sample is evaluated as the
sum of the cross-entropy between the neural net’s prediction
and the true label,

n

L(y*,9) == [9;logy} + (1 = §;)log(1 —y})] (5)
j=1

where y* is the output of our model for all n batch samples,
y; is the output for sample j, and §; € {0,1} is the true
label of the sample j, with O representing benignware and 1
malware.

The neural network is training using backpropagation
and the Adam gradient-based optimizer [26], which we
observed to converge significantly faster than the standard
stochastic gradient descent.

2.3 Bayesian Calibration

Beyond simply detecting malware in a binary sense our
system also seeks to provide users with accurate probabil-
ities that a given file is malware. We do this through a
Bayesian model calibration approach which combines our
empirical belief about the “riskiness” of a given customer
network (represented as our belief about the ratio of mal-
ware to benignware on the customer’s network) and em-
pirical information about our neural network’s error pro-
file against test data. Here describe our specific approach
for adjusting the classifier’s score to reflect the true “threat”
score, given this qualitatively assumed ratio of malware to
benignware.

Let 0 < s < 1 be some score given by the classifier,
reflecting the degree to which a classifier believes an ob-
served binary is malware, with 0 being completely benign,
and 1 being certainly malware. Our goal is to translate this
number into a “threat” score, which will give the user a
measure of how likely that the observed binary is actually
malware. In line with this intuition, we define the threat
score as the probability that the file will actually be mal-
ware, P(C' = m|S = s), given the score s, and category
C = {m,b}. We will use capital P for probability, and the
little p to represent probability density function (pdf), and,
for brevity, drop the equality sign.

Lets assume we have a pdfs for the benign and malware
scores for a given classifier, p(s|b) and p(s|m). We will
describe in the next section how we derive these pdfs from
observed test data. Given a base rate r, the ratio of mal-
ware to benignware, we will not derive how to compute the
threat score. This will be done in two steps: i) we express
our problem in terms of our classifier’s expected pdf for be-
nign and malware predictions, and ii) we demonstrate how
to practically compute these pdfs.

2.3.1 Threat Score
Using Bayes’ rule we have

plsfm) P(m)

Flmls) = p(s)

(0)
Rewriting p(s) as the sum of probabilities over the two pos-
sible labels, we get

p(s|m) P(m)
(s|m) P(m) + p(s|b) P(b)

P(mls) = - ()

Finally, using the constraint that probabilities add up to
1, gives us the final value of the threat score in terms of pdfs
and probability of observing malware (malware base rate) ,

p(s|m) P(m)
(s|m) P(m) + p(s[b)(1 — P(m))’

P(mls) = @®)

14 2015 10th International Conference on Malicious and Unwanted Software: “Know Your Enemy” (MALWARE)

2.3.2 Probability Density Function Estimation

Given the above definition of the threat score, we need
to derive the pdfs p(s|m) and p(s|b). There are two ap-
proaches that are commonly used: i) the parametric ap-
proach, where we assume some distribution for the pdfs,
and fit the parameters of that distribution based on the ob-
served samples, and ii) the non-parametric approach, like
kernel density estimator (KDE), where we approximation a
value of pdf given C' by taking a weighted average of the
neighborhood.

Since it is not reasonable to expect the output of our
ML classifier to follow some standard distribution, we used
KDE with the Epanechnikov kernel [13]. In our testing it
had better validation score than the standard Gaussian ker-
nel. Since the pdfs can only take values in [0, 1], we mir-
rored our samples to the left of O and the right of 1, before
computing the estimated pdf value at a specific point. The
window size was set empirically to 0.01 to better approx-
imate the tail end of distributions, were samples are less
dense.

3 Evaluation

We evaluated our system in two ways. First, we used
our in-house database of malicious and benign binaries to
conduct a set of cross-validation experiments testing how
well our system performs using the individual feature sets
described above and the agglomeration of the feature sets
described above. Second, we used a live feed of binaries
from Invincea customer networks, in conjunction with a live
feed of malicious binaries from the Jotti subscription threat
intelligence feed, to measure the accuracy of our system in
deployment contexts using all feature sets.

All our experiments were ran on Amazon EC2
g2.8xlarge instance, which has 60GB of RAM, and four
1,536 CUDA core graphical processing units, of which we
only used one. The software uses the Keras v0.1.1 deep
learning library to implement the neural network model de-
scribed above. The feature extraction is mostly written in
Cython and Python, heavily relying on SciPy and NumPy
libraries, and each sample’s features are extracted by a sin-
gle thread process. Below we describe each of these evalu-
ations in detail, starting with a description of our evaluation
datasets and then moving on to descriptions of our method-
ology and results.

3.1 Dataset

Our benign and malware binaries were drawn from In-
vincea’s own computer systems and Invincea’s customers
networks. We used malicious binaries obtained from both
the Jotti commercial malware feed and from Invincea’s pri-
vate malware database. Our final dataset, after VirusTotal

filtering, contains 431,926 binaries, with 81,910 labeled as
benignware and 350,016 as malware. Fig. 2 shows counts
for the top malware families, as identified by the Kaspersky
anti-virus engine, in our malware dataset. Fig. 3 gives a his-
togram over the compile timestamps of both the malicious
and benign binaries in our dataset.

virus.win32.sality
trojan.msil.zapchast
trojan.win32.vbkrypt
trojan-downloader.win32.codecpack
trojan.msil.disfa
net-worm.win32.allaple
virus.win32.virut

trojan.win32.vilsel
trojan-psw.win32.kykymber
trojan-dropper.win32.fraudrop
trojan-downloader.win32.agent
packed.win32.krap
trojan.win32.genome
trojan.win32.agent
trojan-gamethief.win32.onlinegames
trojan.win32.jorik
trojan.win32.fakeav
trojan-dropper.win32.agent
worm.win32.vbna
trojan.win32.buzus

0 1000 2000 3000 4000 5000 6000 7000
count

Figure 2. Counts of the top 20 malware fami-
lies in our experimental dataset.

0.0016~

0.0014

0.0012

0.0010

0.0008

0.0006

Normalized count

0.0004

0.0002

0.0000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 1516

Year

Figure 3. Normalized histogram of compile
timestamps for our malware (left, red) and be-
nignware (right, teal) datasets based on the
Portable Executable compile timestamp field.

3.2 Cross-Validation Experiment

We conducted five separate 4-fold cross-validation ex-
periments, where for each experiment we randomly split
our data into four equally sized partitions. For each of the
four partitions, we trained against three partitions and tested
against the fourth.

2015 10th International Conference on Malicious and Unwanted Software: “Know Your Enemy” (MALWARE) 15

1.0 1.0 . .
[0)
T 0.8 0.8} |
S
(0]
= 0.6 0.6} |
k%)
S 04 1 o4}]
()
E 0.2 0.2
0.0 : - 0.0 ‘ ' : 0.0 ‘ '
10 107 107 10 10° 10" 107 107 107 10 10 107 102 10" 10°
E. F.
1.0 1.0 1.0
(0]
5 0.8f {1 o8l 1 o8
S
(0]
= 0.6 { 06 0.6
‘B
8 04 1 o4 1 04
(0]
E 0.2 1 o2l 1 02t
0.0 ' ' 0.0 ‘ ' ; 0.0 ‘ :
10" 107 107 10" 10° 10* 10° 107 10" 10° 10* 10° 102 10" 10°
False positive rate False positive rate False positive rate

Figure 4. Six experiments showing the accuracy of our approach for different combination of feature
types. For each experiment we show a set of solid lines, which are the ROC of the individual cross-
validation folds, and a dotted line is the averaged value of these ROC curves. A. all four feature
types; B. only PE import features; C. only byte/entropy features; D. only metadata features; E. only
string features; F. all features after we train only on the samples whose compile timestamp is before
July 31st, 2014 and test on samples whose compile timestamp is after July 31st, 2014, excluding
samples with blatantly forged compile timestamps.

The first set of cross-validation experiments measured

our system’s individual accuracy of each of the four feature Table 1. Estimated TPR at 0.1% FPR and AUC,
types described in Section 2.1. For these experiments we for the corresponding plots in Fig. 4

reduced the size of the neural network input layer to 256 and

training our network for 200 epochs or until training error Features TPR AUC

falls below 0.02 for each fold. Our fifth experiment was A.All 95.2% | 0.99964
conducted in the same way, but included all of our features B. PE Import 22.8% | 0.95785

and used the 1024 neurons input layer. The results of these C. Byte/entropy 61.1% | 0.99145
validations are shown in Fig. 4 A, B,C, D, and E, and is D. Metadata 86.7% | 0.99912

also summarized in Table 1. These validation results show E. Strings 68.8% | 0.99581

there is significant variation in how each of our feature sets F. All (Time Split) | 67.7% | 0.99794

performs. Using all of the features together produced the
best results, with an average of 95.2% of malicious binaries
not seen in training detected at a 0.1% false positive rate,
with area under the roc (AUC) of 0.99964. Fig. 5 shows
that our ROC improves with the number of epochs, and we
are not suffering from overfitting. For our full dataset, it
takes approximately 15 seconds to train one epoch using a

single GPU, so the full model can be effectively trained in
about 40 minutes.

In terms of independent feature sets, our PE metadata
features perform best, with close to 87% of malware bi-
naries unseen in training detected at a 0.1% false positive

16 2015 10th International Conference on Malicious and Unwanted Software: “Know Your Enemy” (MALWARE)

0.9998

0.9996 R

0.9994 R

0.9992} R

0.9990 B

Area under ROC

0.9988} B

0.9986 ‘ : :
0 50 100 150 200

Training epochs

Figure 5. Plot showing the performance of
our full 1024 feature model, as a function of
training epochs, for each split of our cross-
validation experiment.

rate. Our string features also perform quite well, with 69%
of unseen malware detected at a 0.1% false positive rate.
While our byte-entropy features and import features don’t
perform as well as our PE metadata and string features, we
found that they boost accuracy beyond what string and PE
metadata features can provide on their own.

Comparing these results to previous work is difficult,
since malware binaries used are not provided and the feature
extraction and machine learning procedures are not fully
specified. In addition, ROC curves are not shown in most
publication, so comparing results at low false positive rates
is not possible. The closest results we have observed are
from neural network approaches that uses dynamically ex-
tracted features [11]. There, using a much larger number of
benignware, they report 0.83% FPR at 99.65% TPR. This is
similar to our result of 99.36% TPR at same FPR rate. The
low number of benignware in our current dataset prevents
accurate estimate of TPR at 0.01% FPR, and they did not
report results at 0.1% FPR. We do not have a good estimate
if or by how much our performance would improve on a
larger dataset.

The advantage of our approach is the use of purely static
features, which can be quickly computed for a binary. This
potentially makes it practical to deploy our solution on end-
point without also deploying a virtual machine.

3.3 Expected Deployment Performance

One important question, if our classifier is to be de-
ployed, is how to relate the cross-validated ROC to the ex-
pected performance in enterprise setting. To estimate ex-
pected performance, we observed the number of previously
unseen binaries that were detected for the entire set of cus-

tomers during a span of a few days. This gave us an ex-
pected average of around 5 previously unseen executed bi-
naries per endpoint, per day. For FPR of 0.1%, this would
result in about five false positives per day, per 1000 end-
points, assuming our ROC curve is an accurate estimate of
actual performance. We have confirmed this result by di-
rectly running our sensor on incoming data (endpoint bi-
naries and Jotti stream) over several days, which yielded a
similar performance estimate. Interestingly, some of the top
false positives were anti-virus installers and dubious tools
used by Invincea’s product development team.

3.4 Time Split Experiment

A shortcoming of the standard cross-validation exper-
iments is that they do not separate our ability to detect
slightly modified malware from our ability to detect new
malware toolkits and new versions of existing malware
toolkits. That is because most unique malware binaries, as
defined by cryptographic checksums, are just automatically
generated copies of various metamorphic malware designed
to help it evade signature-based detection.

Thus, to test our system’s ability to detect genuinely new
malware toolkits, or new malware versions, we ran a time
split experiment that better estimates our system’s ability to
detect new malware toolkits and new versions of existing
malware toolkits. We first extracted the compile timestamp
field from each binary executable in our dataset. Next we
excluded binaries that had compile timestamps after July
31st, 2015 (the date on which the experiment was run) and
binaries with compile timestamps before January 1st, 2000,
since for those malware samples the authors have blatantly
tampered with malware binaries’ compile timestamps or the
file is corrupted. Finally, we split our test data into two sets:
a set of binaries with compile timestamps before July 31st,
2014, and the set of binaries on or after July 31st, 2014.
Then, we trained our neural network (using all of the fea-
tures described above) on the earlier dataset and tested on
the later dataset. While we cannot completely trust that mal-
ware authors do not often modify the compile timestamps
on their binaries, there is little motivation for doing so, and
the distribution of dates matches what we know about our
dataset sources, supporting that hypothesis.

The results of this experiment, as shown in Fig. 4F,
demonstrate that our system performs substantially worse
on this test, detecting 67.7% of malware at a 0.1% FPR, and
approaching a 100% detection rate at a 1% FPR. The sub-
stantial degradation in performance is not surprising given
the difficulty of detecting genuinely novel malware pro-
grams versus detecting malware samples that are new in-
stances of known malicious platforms and toolkits. This
result suggests that the classifier should be updated often
using new data in order to main it’s classification accuracy.

2015 10th International Conference on Malicious and Unwanted Software: “Know Your Enemy” (MALWARE) 17

This, however, can be done rapidly and cheaply for a neural
network classifier.

4 Related Work

Malware detection has evolved over the past several
years, due to the increasingly growing threat posed by mal-
ware to large corporations and governmental agencies. Tra-
ditionally, the two major approaches for malware detection
can be roughly split based on the approach that is used to an-
alyze the malware, either static and dynamic analysis (see
review [12]). In static analysis the malware file, or set of
files, are either directly analyzed in binary form, or addi-
tionally unpacked and/or decompiled into assembly repre-
sentation. In dynamic analysis, the binary files are executed,
and the actions are recorded through hooking or some ac-
cess into internals of the virtualization environment.

In principle, dynamic detection can provide direct ob-
servation of malware action, is less vulnerable to obfusca-
tion [30], and makes it harder to recycle existing malware.
However, in practice, automated execution of software is
difficult, since malware can detect if it is running in a sand-
box, and prevent itself from performing malicious behavior.
This resulted in an arms race between dynamic behavior de-
tectors using a sandbox and malware [1, 14]. Further, in a
significant number of cases, malware simply does not exe-
cute properly, due to missing dependencies or unexpected
system configuration. These issues make it difficult to col-
lect a large clean dataset of malware behavior.

Static analysis, on the other hand, while vulnerable to ob-
fuscation, does not require elaborate or expensive setup for
collection, and very large datasets can be created by simply
aggregating the binaries files. Accurate labels can be com-
puted for all these files using anti-virus aggregator sites like
VirusTotal [3].

This makes static analysis very amenable for machine
learning approaches, which tends to perform better as data
size increases [5]. Machine learning has been applied to
malware detection at least since [25], with numerous ap-
proaches since (see reviews [12, 17]). Machine learning
consists of two parts, the feature engineering, where the au-
thor transforms the input binary into a set of features, and
a learning algorithm, which builds a classifier using these
features.

Numerous static features have been proposed for extract-
ing features from binaries: printable strings [31], import
tables [33], byte n-grams [4], opcodes [33], informational
entropy [33]. Assortment of features have also been sug-
gested during the Kaggle Microsoft Malware Classification
Challenge [2], such as opcode images, various decompiled
assembly features, and aggregate statistics. However, we
are not aware of any published methods that break the file
into subsamples (e.g., using sliding windows), and creates a

histogram of all the file’s subsamples based on two or more
properties of the individual subsample.

Potentially the feature space can become large, in those
cases methods like locality-sensitive hashing [21, 6], feature
hashing (aka hashing “trick™) [34, 22], or random projec-
tions [23, 21, 15, 11] have been used in malware detection.

The large number of features, even after dimensional-
ity reduction, can cause scalability issues for some machine
learning algorithms. For example, non-linear SVM ker-
nels require O(NN?) multiplication during each iteration of
the optimizer, where N is the number of samples [16]. k-
Nearest Neighbors (k-NN) requires finding k closest neigh-
bors in a potentially large database of high dimensional
data, during prediction, which requires significant compu-
tation and storage of all label samples.

One popular alternative to the above are ensemble of
trees (boosted trees or bagged trees), which can scale fairly
efficiently by subsampling the feature space during each it-
erations [10]. Decision trees can adapt well to various data
types, and are resilient to heterogeneous scales of values
in feature vectors, so they exhibit good performance even
without some type of data standardization. However, stan-
dard implementations typically do not allow incremental
learning, and fitting the full dataset with large number of
features could potentially require expensive hardware.

Recently, neural networks have emerged as a scalable al-
ternative to the standard machine learning approaches, due
to significant advances in training algorithms [35, 28]. Neu-
ral networks have been previously used in malware detec-
tion [25, 11, 7], though it is not clear how to compare re-
sults, since datasets are different, in addition to the various
pre-filtering of samples that is done before evaluation.

5 Conclusion

In this paper we introduced a deep learning based mal-
ware detection approach that achieves a detection rate of
95% and a false positive rate of 0.1% over an experimental
dataset of over 400,000 software binaries. Additionally, we
have shown that our approach requires modest computation
to perform feature extraction and that it can achieve good
accuracy over our corpus on a single GPU within modest
timeframes.

While our approaches achieves high accuracy and low
false positive rate on the standard cross-validation, the per-
formance decays significantly in the time split validation,
suggesting the we are relying on syntactic, rather than se-
mantic, features for achieving very low false positive rate.
This is not surprising, given that we do not attempt to unob-
fuscate the binaries. An automatic detection and deobfus-
cation of the binary could potentially improve our results
[36].

Our experiment was performed on a fairly large number

18 2015 10th International Conference on Malicious and Unwanted Software: “Know Your Enemy” (MALWARE)

of binaries, however the number of benign binaries is still
too small to accurate estimate performance at the very end
of the false positive scale (< 10~%), which is of interest for
very large enterprise networks. It is also unclear if adding
more data would improve results, in addition to providing
better false positive estimates.

Estimate the false positive rate also relies on very accu-
rate binary labels (they need to be lower than the false pos-
itive rate being estimated). In our approach we took 30%
cutoff in the VirusTotal score as threshold. Potentially more
complicated techniques that rely on weighted averaging and
time from first seen could be used to improve label accuracy
[24].

Regardless of the described limitations, we believe that
the layered approach of deep neural networks and our two
dimensional histogram features provide an implicit catego-
rization of binary types, allowing us to directly train on all
the binaries, without separating them based on internal fea-
tures, like packer types, and so on.

Neural networks also have several properties that make
them good candidates for malware detection. First, they can
allow incremental learning, thus, not only can they be train-
ing in batches, but they can re-trained efficiently (even on an
hourly or daily basis), as new training data is collected. Sec-
ond, they allow us to combine labeled and unlabeled data,
through pre-training of individual layers [20]. Third, the
classifiers are very compact, so prediction can be done very
quickly using low amounts of memory.

6 Software and Data

Any part of the feature extraction code, data matrix,
the label vector, and the neural network code, if or when
it becomes available, would be released at https:
//github.com/konstantinberlin/Malware-
Detection-Using-Two-Dimensional-Binary-—
Program—-Features.

7 Acknowledgement

We would like to thank Aaron Liu at Invincea Inc. for
providing crucial engineering support over the course of
this research. We also thank the Invincea Labs data science
team, including Alex Long, David Slater, Giacomo Berg-
amo, James Gentile, Matt Johnson, and Robert Gove, for
their feedback as this work progressed.

References

[1] Anubis. https://anubis.iseclab.org/.

[2] Kaggle: Microsoft malware classification challenge.
https://www.kaggle.com/c/malware—
classification.

[3] VirusTotal. hhttps://www.virtualbox.org.

[4] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Swei-
dan. N-gram-based detection of new malicious code.
In Computer Software and Applications Conference,
2004. COMPSAC 2004. Proceedings of the 28th An-
nual International, volume 2, pages 41-42. 1IEEE,
2004.

[5] M. Banko and E. Brill. Scaling to very very large cor-
pora for natural language disambiguation. In Proceed-
ings of the 39th Annual Meeting on Association for
Computational Linguistics, pages 26—33. Association
for Computational Linguistics, 2001.

[6] U.Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel,
and E. Kirda. Scalable, behavior-based malware clus-
tering. In NDSS, volume 9, pages 8—11, 2009.

[7] R. Benchea and D. T. Gavrilut. Combining restricted
boltzmann machine and one side perceptron for mal-
ware detection. In Graph-Based Representation and
Reasoning, pages 93—-103. Springer, 2014.

[8] Y. Bengio, Y. LeCun, et al. Scaling learning algo-
rithms towards ai. Large-scale kernel machines, 34(5),
2007.

[9] K. Berlin, D. Slater, and J. Saxe. Malicious behavior
detection using windows audit logs. In Proceedings of
the 2015Workshop on Artificial Intelligent and Secu-
rity Workshop, page (to appear). ACM, 2015.

[10] L. Breiman. Random forests. Machine learning,
45(1):5-32, 2001.

[11] G.E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-
scale malware classification using random projections
and neural networks. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Con-
ference on, pages 3422-3426. IEEE, 2013.

[12] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A
survey on automated dynamic malware-analysis tech-
niques and tools. ACM Computing Surveys, 44(2):6,
2012.

[13] V. A. Epanechnikov. Non-parametric estimation of a
multivariate probability density. Theory of Probability
& Its Applications, 14(1):153-158, 1969.

[14] D. Fleck, A. Tokhtabayev, A. Alarif, A. Stavrou, and
T. Nykodym. Pytrigger: A system to trigger & ex-
tract user-activated malware behavior. In Proceedings

2015 10th International Conference on Malicious and Unwanted Software: “Know Your Enemy” (MALWARE) 19

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

20

of the 2013 International Conference on Availability,
Reliability and Security, pages 92—-101. IEEE, 2013.

D. Fradkin and D. Madigan. Experiments with ran-
dom projections for machine learning. In Proceed-
ings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 517-522, 2003.

J. Friedman, T. Hastie, and R. Tibshirani. The ele-
ments of statistical learning, volume 1. Springer series
in statistics Springer, Berlin, 2001.

E. Gandotra, D. Bansal, and S. Sofat. Malware anal-
ysis and classification: A survey. Journal of Informa-
tion Security, 5(02):56, 2014.

X. Glorot and Y. Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In
International conference on artificial intelligence and
statistics, pages 249-256, 2010.

K. He, X. Zhang, S. Ren, and J. Sun. Delving
deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. arXiv preprint
arXiv:1502.01852, 2015.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learn-
ing algorithm for deep belief nets. Neural computa-
tion, 18(7):1527-1554, 2006.

P. Indyk and R. Motwani. Approximate nearest neigh-
bors: towards removing the curse of dimensionality.
In Proceedings of the thirtieth annual ACM sympo-
sium on Theory of computing, pages 604—-613. ACM,
1998.

J. Jang, D. Brumley, and S. Venkataraman. Bitshred:
feature hashing malware for scalable triage and se-
mantic analysis. In Proceedings of the 18th ACM con-
ference on Computer and communications security,
pages 309-320. ACM, 2011.

W. B. Johnson and J. Lindenstrauss. Extensions of
Lipschitz mappings into a Hilbert space. Contempo-
rary mathematics, 26(189-206):1, 1984.

A. Kantchelian, M. C. Tschantz, S. Afroz, B. Miller,
A. Joseph, J. D. Tygar, V. Shankar, and R. Bachwani.
Better malware ground truth: Techniques for weight-
ing anti-virus vendor labels. In Proceedings of the
2015Workshop on Artificial Intelligent and Security
Workshop, page (to appear). ACM, 2015.

J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M.
Chess, G. J. Tesauro, S. R. White, and T. Watson. Bi-
ologically inspired defenses against computer viruses.
In IJCAI (1), pages 985-996, 1995.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

D. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097-1105, 2012.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 521(7553):436-444, 2015.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier
nonlinearities improve neural network acoustic mod-
els. In Proc. ICML, volume 30, 2013.

A. Moser, C. Kruegel, and E. Kirda. Limits of static
analysis for malware detection. In Proceedings of

the 23rd Computer Security Applications Conference,
pages 421-430, 2007.

M. Schultz, E. Eskin, E. Zadok, and S. Stolfo. Data
mining methods for detection of new malicious exe-
cutables. In Security and Privacy, 2001. S P 2001.
Proceedings. 2001 IEEE Symposium on, pages 38—49,
2001.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to pre-
vent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929-1958, 2014.

M. Weber, M. Schmid, M. Schatz, and D. Geyer.
A toolkit for detecting and analyzing malicious soft-
ware. In Computer Security Applications Confer-
ence, 2002. Proceedings. 18th Annual, pages 423—
431. IEEE, 2002.

K. Weinberger, A. Dasgupta, J. Langford, A. Smola,
and J. Attenberg. Feature hashing for large scale mul-
titask learning. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, pages
1113-1120. ACM, 20009.

S. Wozniak, A.-D. Almasi, V. Cristea, Y. Leblebici,
and T. Engbersen. Review of advances in neural net-
works: Neural design technology stack. In Proceed-
ings of ELM-2014 Volume 1, pages 367-376. Springer,
2015.

B. Yadegari, B. Johannesmeyer, B. Whitely, and
S. Debray. A generic approach to automatic deobfus-
cation of executable code. Technical report, Technical
report, Department of Computer Science, The Univer-
sity of Arizona, 2014.

2015 10th International Conference on Malicious and Unwanted Software: “Know Your Enemy” (MALWARE)

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

