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Abstract—Medical image analysis remains a challenging application area for artificial intelligence. When applying machine learning,

obtaining ground-truth labels for supervised learning is more difficult than in many more common applications of machine learning. This

is especially so for datasets with abnormalities, as tissue types and the shapes of the organs in these datasets differ widely. However,

organ detection in such an abnormal dataset may have many promising potential real-world applications, such as automatic diagnosis,

automated radiotherapy planning, and medical image retrieval, where new multimodal medical images provide more information about

the imaged tissues for diagnosis. Here, we test the application of deep learning methods to organ identification in magnetic resonance

medical images, with visual and temporal hierarchical features learned to categorize object classes from an unlabeled multimodal

DCE-MRI dataset so that only a weakly supervised training is required for a classifier. A probabilistic patch-based method was

employed for multiple organ detection, with the features learned from the deep learning model. This shows the potential of the deep

learning model for application to medical images, despite the difficulty of obtaining libraries of correctly labeled training datasets and

despite the intrinsic abnormalities present in patient datasets.

Index Terms—Edge and feature detection, object recognition, pixel classification, machine learning, biomedical image processing

Ç

1 INTRODUCTION

MEDICAL image analysis remains one of the less studied
areas of computer vision. Unlike the frequently used

scene images, for which the features are often well defined
[1], [2], [3] and where the aim is to recognize an object in a 2D
image, medical datasets and the objects contained within
them are often 3D, with recognition performed on the
component 2D slices. Moreover, while scene images are
familiar to us and there are “enough” images with ground-
truth provided [4], [5] for the training of machine learning
algorithms, medical images are harder to obtain, and the
ground-truth labels require substantially more specialist
knowledge to define. By the same token, the time-consuming
nature of the labeling task provides a strong impetus for the
development of automated methods such as those described
here. This is especially the case for patient data because of the
abnormalities arising from disease. Both the shape and
contrast properties of an organ with disease might look
significantly different from the corresponding normal tissue.
Furthermore, the majority of medical images—including all
those containing the pathology that is the likely target and
motivation for segmentation studies—are obtained from

patients rather than healthy volunteers. This presents
significant problems in making test datasets widely avail-
able, problems which are rooted both in the “data reuse”
clauses of the ethical approvals under which a study has
been conducted and in the nondisclosure arrangements
imposed by the pharmaceutical companies that often
sponsor the trials. Multimodal and so-called “functional”
images can provide additional diagnostic information about
the tissues being imaged to supplement the standard
morphological images. However, the relatively recent
introduction of such techniques, together with the cost of
the extra imaging, mean that appropriately labeled func-
tional datasets are rare and often are available only for small
patient cohorts. Dynamic contrast-enhanced magnetic reso-
nance imaging (DCE-MRI) [6] is a typical example: It has
become an important tool for cancer diagnosis and assess-
ment of therapeutic outcomes as it provides information on
blood perfusion dynamics and vascular permeability of
tissues, but it is uncommon to obtain DCE-MRI from a
healthy subject because there are significant ethical restric-
tions on the use of contrast agents in nonpatients. A 4D DCE-
MRI study is comprised of serial 3D datasets obtained
during administration of a contrast agent.

We believe that “deep learning” can provide a promising
approach to machine learning in patient datasets and might
be a useful component of a diagnostic support platform.
Unsupervised deep learning of hierarchical features fits
well with the situation described above of medical image
analysis using limited patient datasets and limited access to
high-quality labeled data. It is our hypothesis that when
hierarchical features are learned unsupervised, they repre-
sent characteristics of the object classes appearing in the
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dataset, and therefore only “rough guidance” is required
from the human operator to train a classifier. Raina et al. [8]
coined the term “self-taught learning” for this process, and
our experiments show that features of the objects can be
learned effectively from unlabeled data, with better
representations being learned when the original data
contain richer information from multiple modalities (in this
case temporal), rather than simple visual data alone.

Following the approach of [8], we compare our new
procedure to principal component analysis (PCA), which
serves as a baseline method for unsupervised feature
learning and, in addition, to a single-convolutional neural
network (1-CNN) to demonstrate the effect of pretraining.
We also compare our algorithm with two established
feature-learning methods for image and time-series data:
histogram of oriented gradients (HOG) [3] and a discrete
Fourier transform (DFT) approach.

We show that a deep learning with a stacked sparse
autoencoder model can be effectively used for unsuper-
vised feature learning on a complex dataset for which it is
difficult to obtain labeled samples. It makes minimal
assumptions about the model describing the given data,
and a similar model can be applied to new kinds of dataset
with minimal redesign. Previous studies have shown that
reducing the number of assumptions about the data and
annotations can improve performance on action-classifica-
tion tasks in multimodal data [17]. Furthermore, an “open”
model (i.e., one for which the characteristics of the features
learned can be controlled by its hyperparameters [9]) can be
extended to “context-specific” feature learning. In our case,
a typical context is the binary classification of an entity in
the dataset as belonging to a particular organ class, and this
type of learning is an approach in which different sets of
features, each set being specific to a given context, can be
learned by the same base-model. Finally, we demonstrate a
probabilistic part-based method for object detection, which
is used for localization of multiple organs, with the
multimodal features learned from an unlabeled 4D DCE-
MRI dataset.

The remainder of the paper is organized as follows:
In Section 2, we review related works in the literature.
Section 3 introduces the 4D patient data used in our study.
Section 4 introduces the single-layer sparse autoencoder
and reviews a preliminary study of our system applying
the sparse autoencoder [10]. The concept of stacked sparse
autoencoders, a deep architecture of the single-layer sparse
autoencoder applied with max-pooling, is introduced in
Section 5, together with analysis and comparison with
other methods. Multi-organ detection with the stacked
sparse autoencoders and probabilistic part-based object
detection are covered in Section 6, followed by a
discussion and conclusion.

2 RELATED RESEARCH

Our overall aim is to learn the object classes in a minimally
labeled dataset: In other words, only a weakly supervised
training is required to train a classifier. So-called “part-
models” for the self-learning of object classes were studied
for 2D images in [11], [12], [13], [14], and [15] to achieve
object detection in such weakly supervised settings. In our

work, a deep network model is used to learn features and
part-based object class models in an unsupervised setting.

In [16], Ji et al. used 3D CNN to perform human-action
recognition in video sequences. In this case, the CNNs were
trained with labeled datasets and a large number of labeled
examples were required. Furthermore, the action recogni-
tion was performed on a subwindow within a video
sequence, which had to be preselected by a tracking
algorithm, and the performance of the action-recognition
was dependent on the tracking algorithm. By contrast, in
[17] a generative model for learning latent information was
applied for action recognition, and it did not require a
tracking algorithm to recognize a human action, where the
spatiotemporal features were learned from video sequences
in an unsupervised manner. Based on the learned spatio-
temporal features, “interest-points” were detected within a
video sequence, and multiple actions could be recognized
in a single video, based on those interest points. In a similar
manner, we use a deep learning model to learn the latent
information in a 4D medical image dataset.

Deep learning has attracted much interest recently, and
has been used in a number of application areas. Many
studies have shown how hierarchical structures in images
can be learned using deep architectures with application to
object recognition [18], [19], [20], [21], [22], [23]. Object
recognition and tracking in videos with deep networks was
shown in [24], where graphical model was used in addition
to unsupervised feature learning by a restricted Boltzmann
machines (RBM) [25]. Deep neural networks for classifica-
tion of fMRI brain images were studied in [26], where RBMs
were used to classify the stage and action of a volume while
the images were taken.

Deep learning of multimodal features was recently
studied in [27]. Our approach is similar, and we use
stacked autoencoder model structure for separately learn-
ing both visual and temporal features. Independent sub-
space analysis, a deep neural network model for
unsupervised multimodal feature learning, was suggested
in [28], whereas in [29] and the many previous action-
recognition studies appearing in [28], the objective was to
recognize the action a video sequence represents. This also
applies to [27], where the objective was to use multimodal
feature learning to classify the whole video sequence as a
single category. In our study, we aim to use unsupervised
feature learning to recognize several objects within a given
multimodal dataset.

Previous studies of automated object detection in
medical images have tended to concentrate on brain images,
especially detecting brain tumors. This is largely because
both the shape and properties of the brain are more
homogeneous across individuals than is the case for other
parts of the body; for example, segmentation of MS lesions
is reported in [30], [31], [32], and [33]. In all these cases, the
disease tends to change the overall shape of the brain
relatively little, whereas substantial shape changes can be
observed with diseased abdominal organs. Moreover, a
tumor is not an organ type but is a collection of abnormal
tissues, which makes the approach to tumor segmentation
different from object detection with a pattern recognition
approach. Some of the complex tumor types represented by
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features learned with a sparse autoencoder in our dataset
can be seen later in Section 4.1 and Fig. 4. In previous work

[34], we suggested an approach for brain tumor segmenta-

tion in which a single-layer sparse autoencoder was used to
learn the features present in the variation of image bright-

ness in multiparametric MR images, followed by spatial

clustering and logistic regression to segment edema and

tumor. While this result indicates the potential of applying
sparse autoencoders for medical image classification, the

methods in [34] require additional elements to enable

abdominal organ detection and classification to be per-
formed at the same time.

The abdominal region contains many important organs
and therefore has great potential to be useful for automated

diagnosis and radiotherapy planning. Multi-organ detec-

tion was demonstrated in computed tomography (CT)
images in [35], in contrast-enhanced abdominal CT images

in [36], and in whole-body MR Dixon sequences in [37]. In

all of these cases, a clearly labeled training dataset was

required. Multi-organ segmentation on CT images using
active learning with a minimal supervisory training set was

demonstrated in [38], although in this study, a clinical

expert’s presence was required for the consecutive labeling
during the active learning process. Also, the organs in the

dataset in the studies are not largely abnormal as is the case

in our data with tumors.
To our knowledge, there has not yet been an application

of unsupervised feature learning with a deep learning
approach to object recognition in medical images with large

heterogeneous datasets. We demonstrate multi-organ de-

tection in 4D DCE-MRI patient data, using the hierarchical
multimodal features learned from an unlabeled subset of

datasets with 78 patient scans.
The training, cross validation (CV), and test dataset are

anonymized patient data from different studies of diseases,

and our results show that the proposed method successfully
learns features that lead to good classification performance

in complex and variable datasets with low image resolution

and noisy ground truth labels.

3 DATASET

Our 4D dataset consists of a time series of 3D DCE-MRI

scans from two studies of liver metastases and one study of

kidney metastases:

. Dataset A. Forty-six scans of patients with liver
metastases, each containing 7-12 contiguous coronal
slices with image size 256� 256, repeated at T ¼ 40
time points.

. Dataset B. Three scans of patients with kidney
metastases, each containing 14 contiguous coronal
slices with size 256� 267, repeated at T ¼ 40 time
points

. Dataset C. Twenty-nine scans of patients with liver
metastases from a clinical trial, each containing
14 contiguous coronal slices with image size
209� 256, repeated at T ¼ 40 time points.

These scans were acquired using a sequential breath-hold
protocol [39], where two image volumes were obtained
during consecutive 6 second breath-holds. Each breath-hold
was followed by a 6 second interval where the patient was
instructed to take a single breath. The images are obtained
from different patients, and the slice locations (anterior-
posterior positions are represented on the y-axis of the image
volumes) are different between patients, which in conse-
quence make the shapes of some organs in the images differ
substantially. Moreover, the uncertainties in the locations
and boundaries of the organs in coronal DCE-MRI images
are large because many organs are located closely together,
image resolution is relatively low (2.5 mm in-plane), and
because of the pattern of contrast uptake in some organs.
Furthermore, when an organ is in a late stage of a disease, its
shape can be grossly abnormal. Examples are shown in
Fig. 1. A contrast agent is injected into the patient during the
DCE-MRI acquisition so that the contrast of the successive
images changes according to the blood perfusion dynamics
and vascular permeability of the tissues observed. DCE-MRI
images of a liver patient scan and a time series of a liver
voxels brightness change are shown in Fig. 2.

Subsets of dataset A were used for training, subsets of
dataset B for CV, and dataset C was used for the final
visualization and test, respectively. “Rough” outlines
encompassing the labeled tissues, as shown in Fig. 1, were
drawn by a nonexpert, and subsequently adjusted and
confirmed by a radiologist. These outlines are used for
supervised training in the training dataset and performance
evaluation in the CV dataset.

4 SINGLE-LAYER SPARSE AUTOENCODER

An autoencoder is a symmetrical neural network to learn
the features of a dataset in an unsupervised manner. This is
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Fig. 1. The shapes of the organs vary substantially and the shape of a liver with metastases can be very abnormal (e). Regions were labeled as
described in the main text. Note how the exact outline of the organs is not always clear. Uncertainty in identifying the spleen was high as it is difficult
to distinguish from the other nearby organs, for example, in (d).



done by minimizing the reconstruction error between the

input data at the encoding layer and its reconstruction at the

decoding layer so that the correlation between the input

features is learned in an EM-like fashion [19], [40] in the

mapping weight vectors.
Encoding of an input vector x 2 IRD�1 is done by

applying a linear mapping and a nonlinear activation
function to the network:

a ¼ sigmðWxþ b1Þ; ð1Þ

where W 2 IRN�D is a weight matrix with N features, b1 2
IRN is an encoding bias, and sigmðxÞ is the logistic sigmoid

function ð1þ expð�xÞÞ�1. Decoding of a is performed using
a separate decoding matrix:

z ¼ sigmðVTaþ b2Þ; ð2Þ

where b2 is a decoding bias and the decoding matrix is

V 2 IRN�D. Features in the data are learned by minimizing

the reconstruction error of the likelihood function LðX;ZÞ
¼ 1

2

Pm
i¼1 kzi � xik2

2, where X and Z are all the training and

reconstructed data, respectively, and the features are

encapsulated in W.
While an autoencoder has a close relationship to PCA by

usually performing a dimensionality reduction, an “over-

complete” (larger than the input dimension) nonlinear

mapping of the input vector x can be made by applying

sparsity to the target activation function, that is, a sparse

autoencoder [41], [42], [43], [44], [45]. To achieve this, the

objective in the sparse autoencoder learning is to minimize

the reconstruction error with a sparsity constraint:

LðX;ZÞ þ �
XN

j¼1

KLð�k�̂jÞ; ð3Þ

where � is the weight of the sparsity penalty, N is the

number of features in the weight matrix, � is the target

average activation of a, and �̂j ¼ 1
m

Pm
i¼1½aj�i is the average

activation of jth input vector aj over the m training data.

The Kullback-Leibler divergence [46] is given by

KLð�k�̂jÞ ¼ � log
�

�̂j
þ ð1� �Þ log

1� �

1� �̂j
; ð4Þ

which provides the sparsity constraint—a nonredundant
overcomplete feature set will be learned when � is small, as
in sparse coding [47].

The model is trained by optimizing the objective function
(see (3)) with respect to W, V, b1, and b2, where we used
backpropagation [48] and L-BFGS [49] to train the model. It
is generally accepted that classification performance is
improved by increasing the number of learned features
(N), and the effect of the number of features on classifica-
tion performance using single-layer networks has been
studied in more detail in [50].

Our DCE-MRI data have both temporal and spatial
domains. Temporal features are learned from the organ-
specific changes in intensity that occur over time, as the
contrast agent is differentially absorbed. Following the
intensity of each 3D voxel in a set of ny coronal slices of
matrix size nx � nz through T time-points provides a set of
nxnynz voxel “contrast uptake curves.” Features in the
spatial domain are identified in our work by sampling 2D
image “patches” as described below.

4.1 Application of Single-Layer Sparse
Autoencoders to Temporal Feature Learning

Approximately 1:3� 104 time series signals were randomly
sampled from the complete set of contrast uptake curves in
the training dataset, excluding the background and regions
affected by breathing motion. A pixel is regarded as
background or a region affected by breathing motion when
its image intensity falls below 10 percent of the maximum
intensity in the image within the imaging time-course
(T ¼ 40 image volumes). Temporal features are learned by
the single-layer sparse autoencoder (see (3)) from the
samples, where each time series is a 40 element input vector
and the N temporal features are the individual weights wj 2
IR40�1 (rows) of the weight matrix W 2 IRN�40.

Certain vascular characteristics of a tissue can be
represented by its time series in the 4D DCE-MRI image
dataset so that the temporal features alone may be sufficient
for unsupervised tissue type classification. Unsupervised
tissue type classification using a single-layer sparse auto-
encoder was evaluated and visualization was previously
reported [10]. In this work, we 1) performed dimensionality
reduction in the temporal space with a single layer
autoencoder network, 2) did vector quantization of the
features with a sigmoid activation function, and 3) mapped
the result of the vector quantization into RGB space. Three
examples of these results are shown in Fig. 4.

Different tissue types are represented in different
colors—liver in cyan and blood vessels in green. Heart
and kidney are represented as a number of different colors,
but the color pattern is consistent. Liver tumors appear as a
complex pattern of different classes. With this method
some tissues of different organs appear labeled as being of
the same class, for example liver, spleen, and part of the
heart and aorta all appear as the same cyan color. This
approach does not use the spatial information in the data,
so although an organ with more constant tissue character-
istic can be detected and segmented, an organ which
consists of a combination of different tissue types is not
detected as a single entity. Our aim here is to solve these
problems by using deep architectures with spatial-pooling
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Fig. 2. A 4D DCE-MRI scan of a liver patient for a time course 1 � t � 40
with volume size of 256� 256� 7. Each pixel of an image slice in a
volume gives a time series of its brightness over 40 images. The time
series represents the perfusion status of the tissue in the voxel and will
vary with tissue types.



so that feature learning can incorporate progressively
larger spatial regions.

4.2 Application of Single-Layer Sparse
Autoencoders to Visual Feature Learning

There are many existing reports on the application of deep
learning to classification using the purely spatial features
found in 2D images. We describe these as “visual features,”
to have a clear distinction from temporal features with
spatial pooling (see Section 5). In later sections we compare
visual and temporal features separately, and shallow
combined representation of multimodal features [27] as an
augmented input to an organ classifier. We learned 2D
visual features from approximately 1:3� 104 image patches
randomly sampled from the first image slice in each time-
series (before the contrast agent is injected), also excluding
patches containing background or voxels affected by
breathing motion. For image patches of size m�m the
visual features learned by the autoencoder are given by
weight vectors wj 2 IRm2�1 and N vectors combine to give
the weight matrix W 2 IRN�m2

.
Temporal and visual features for our data are shown in

Fig. 3. They represent an overcomplete set of 256 temporal
features, and there is no obvious redundancy or repetition
of trivial signals (see Fig. 3a). The visual bases in Fig. 3b are
learned from 8� 8 image patches and show Gabor-like
edge detectors of different orientations and locations, which
are coherent with the results of the previous studies [9],
[41]. We apply these features of different input modalities to
build a part-based model for multiple organ detection (see
Section 6).

5 STACKED SPARSE AUTOENCODERS

Stacked sparse autoencoders—a deep learning architecture
of sparse autoencoders—are built by stacking additional
unsupervised feature learning layers, and can be trained
using greedy methods for each additional layer [42]. By
applying a pooling operation [18], [52] after each layer,
features of progressively larger input regions are essentially
compressed, and this approach is used to build a part-based
model for multiple organ detection.

5.1 Part-Based Model with Spatial Feature Matching

We want our model to learn object parts so that we can
perform part-based object detection as was done for 2D
images in [11], [12], [13], [14], [15], and for action recognition

in video sequences in [17], where in [17] the parts were
called the “interest-points.” The visual feature learning layer
already captures a certain spatial region (patch), which
could then correspond to a part of an organ. But the
temporal feature learning layer captures only a pixel in the
spatial domain, and so a larger spatial proximity of
temporal features (e.g., a part of an organ represented by
temporal features) is captured by applying max-pooling:

y ¼ maxfjWx1;Wx2; . . . ;WxRjg; ð5Þ

where W is the encoding matrix (distinct for each layer),
x1; . . . ;xR are the input vectors to the max-pooling
operation, and the max and modulus functions are applied
element-wise. For the application of max-pooling after the
temporal feature learning layer, W is the temporal feature
set and xi is a time-series signal. For max-pooling on an
M �M patch, R ¼M2.

As an example, a conceptual visualization of 3� 3 max-
pooling for 3� 3 size patches in a 2D feature space using
the visualization of Fig. 4c is shown in Fig. 5a, and for a
3� 3 patch in 3D temporal feature space is visualized in
Fig. 5b. It can be seen how the patches located on different
regions of a kidney can capture the same temporal feature
from a given patch size.

Features of next level spatial hierarchy—object parts
with a larger region of spatial invariant feature set—are
captured by a successive unsupervised feature learning on
the max-pooled output of the features to learn the features
of larger input region, based on what it has learned for a
smaller input region. We examine in the following sections
whether useful features are learned in the second feature
learning layer. Examples of our model of two-layer stacked
sparse autoencoder networks for learning hierarchical
visual features and temporal features, each with a classifier
network as the final layer, are shown in Fig. 6. Max-pooling
in the visual feature learning network is applied such that
each layer captures the same size of 2D spatial area as the
temporal feature learning layer.
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Fig. 3. Two hundred fifty-six overcomplete (a) temporal and (b) 8� 8
size visual feature set learned by unsupervised sparse feature learning.

Fig. 4. Visualization of dimensionality reduction with a single-layer
sparse autoencoder, where the size of the DCE-MRI temporal
dimension is reduced from 40 to 16 elements. Different tissue types
are visualized in different colors, and a liver tumor is represented as a
complex pattern within liver (a), (b). Ambiguities in identifying some
tissue types of different organs remain, with some subregions of the
aorta, heart, liver, and spleen being represented as the same cyan color.



This can be compared with the “bag-of-words” model
for image classification [53], [54], where the application of
convolutional unsupervised feature learning for the learn-
ing of successive layers is conceptually similar to the spatial
pyramid matching model [15], [55]. In our case, we are
dealing with a “bag of spatial and temporal words.” Some
of the differences of the stacked sparse-autoencoder
approach in this study to the works cited are that: 1) Spatial
and temporal features are used in our work as opposed to
visual features only, such as SIFT [1] and HOG [3],
2) orientation of the features is predefined in [15], and
3) next-level features with the previous hierarchy features
as priors are learned in the successive autoencoder
learning, whereas the same feature is used for all of the
spatial pyramid hierarchies.

We compare our unsupervised learning method using
sparse autoencoders with more popular, predefined fea-
tures for vision and time-series: HOG and DFT. We also

compare PCA as a baseline method for unsupervised
feature learning, and see whether PCA can be applied to

successive hierarchical feature learning as well.

5.2 Analysis and Comparison with Other Methods

The extent to which the learned features can represent our

object classes is evaluated by the patch-wise classification
accuracy of organs, based on the labels obtained from

the roughly drawn regions of interest as shown in Fig. 1.
Since the labeled regions include voxels from outside the
intended organ, the accuracy cannot be 100 percent, even

with perfect classification. However, as the labeled regions
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Fig. 5. (a) A conceptual visualization of max-pooling on a 2D feature space showing how it can capture the same feature for the patches at different
locations in the kidney in Fig. 4c. (b) A conceptual visualization of 3� 3 max-pooling on a 3D temporal feature space with 256 temporal features.

Fig. 6. The overall architecture of the visual feature learning networks (top) and temporal feature extraction networks (bottom). The first and second
hidden layers are unsupervised feature learning networks and the third hidden layer is a classification network which is trained with supervision to
classify patches of different organs.



contain more correct voxels than incorrect voxels, we
assume that higher accuracy corresponds to a better
classification performance.

We compare our unsupervised feature learning meth-
ods using stacked autoencoders (SAE) to PCA, as PCA is
a popular unsupervised feature learning method. We also
evaluate whether PCA can learn hierarchical features
when applied successively with max-pooling, where we
use 16 principal components for projection of the input
data. We test SAE with both 16 (SAE-16) and 256 (SAE-
256) learned features to make a fair comparison with PCA
using 16 features, and to see the effect of the number of
SAE learned features and overcompleteness on classifica-
tion performance.

A single layer convolutional network (1-CNN) is also
tested to see the effect of pretraining on the features, and in
addition, a single convolutional network using HOG visual
features and DFT temporal features. Classification is done
with a single-layer classifier network, where the parameters
for the training are chosen by a CV test on small subsets of
the data. With the best parameters so derived, the final
accuracy is reported after additional training and CV using
larger subsets of the dataset. Unsupervised feature learning
and classifier training uses only dataset A, and classification
is performed only with dataset B to show the applicability
of the features learned unsupervised to an unseen dataset.

Deep networks are known to be difficult to train, and this
certainly applies to stacked sparse autoencoder training
where there are many hyperparameters affecting the
behavior of the model. The hyperparameters required for
training the sparse autoencoders are the target mean
activation �, the weight of the sparsity penalty �, and the
weight decay for the backpropagation optimization �. We
used a coordinate ascent-like method to optimize these for
each layer, together with the patch and pooling sizes.
Coordinate ascent consists of optimizing each parameter
while the others are fixed, and repeating this process for a
certain number of iterations until the performance converges.

It was optimized on the classification accuracy of the
entire object classes overall, and the optimized average
accuracy is shown in Table 1, with the corresponding
hyperparameters and patch/pooling sizes. During the
optimization process, the classification performance of each
individual object class is recorded as well, but in F1-score
rather than in accuracy because in this case the true/false
label is biased for each class to the others, where F1-score is

defined as F1 ¼ 2 � precision�recall
precisionþrecall , and precision ¼ tp=ðtpþ fpÞ,

recall ¼ tp=ðtpþ fnÞ, tp: true positives, fp: false positives,
fn: false negatives. The averaged F1-score F1avg over each
class’s F1-score for the optimal overall classification
accuracy and the corresponding hyperparameter settings
are shown in Table 1 as well, and will be discussed later in
Section 5.4.

As was mentioned earlier, typical recognition tasks on
medical images are to recognize objects in each component
2D slice in a 3D volume, and correspondingly an object
category can have many appearances on its 2D slices.
However, an organ type can contain different tissue types,
which are represented in the characteristics of the DCE-MRI
time-series signal, and the constant characteristic penetrates
through the 3D slices. We can also see that second hierarchy
features do not necessarily give better results and can be
worse for some features. This was also seen in [9] for SAE,
and we will discuss this further in Section 5.4.

5.3 Unsupervised Learning of Object Classes

Patches of organ classes filtered with each of the features
compared are shown in Fig. 7 as 2D scatter plots. From the
training dataset, 1,500 patches are sampled randomly for
each organ category, filtered with the features, and the
dimension of the patches is reduced to two using PCA to
aid visualization. It is noticeable that the object classes are
very well captured by the 16 temporal features learned by
single layer unsupervised sparse feature learning (TE-L1-
SAE-16). The object classes are reasonably well separated
with 1-convolutional DFT temporal features (TE-DFT), but
less so with 1-convolutional PCA (TE-L1-PCA) or
1-convolutional temporal features alone (TE-1-CNN). It is
not obvious from the plots whether the overcomplete
methods (with 256 features) have learned features that
better discriminate the organ classes and may therefore be
expected to give better classification performance. This is
due to the dramatic dimensionality reduction needed for
visualization (256 to 2), as the classification performance
with those features shows good results in Table 1. Overall,
temporal features have better classification performance
than visual-only features.

Fig. 7 appears to show nearly perfect categorization of
self-learned features for the TE-L1-SC-16 approach, but the
reason the classification accuracy is not higher than that in
Table 1 can be seen in Fig. 8. Fig. 8 shows 1,500 randomly
sampled patches of a new subset of the training dataset

1936 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 8, AUGUST 2013

TABLE 1
Part-Based Classification Accuracies and the Stacked Sparse Autoencoder (SAE) Hyperparameters (Including Patch and Pooling

Sizes) Used with: First- and Second-Level Hierarchy (L1 and L2); Visual and Temporal Features (VI and TE);
16 and 256 Learned Features

Baseline models are compared with their average classification accuracies for organs (acc), and average F1-score (F1avg) of each individual object
class’s score is shown for comparison later in Section 5.4 with Table 2.



(liver patient dataset) and CV dataset (kidney patient
dataset), each filtered with the same temporal features used
in Fig. 7. Although the TE-L1-SAE-16 features separate the
organ classes very well in the new subset of the training
dataset, the separation is not nearly as clear on the CV
dataset. This performance reduction could be mitigated by
unsupervised feature learning on a larger subset of (more
heterogeneous) training data, but it is technically challen-
ging to train on a very large scale dataset. In Fig. 8, patches
of the CV dataset filtered with TE-L1-DFT and TE-L2-
PCA—which showed good separation of the organ classes
with the training data—are also shown, and they too show
less clear separation in the CV dataset.

5.4 Context-Specific Feature Learning

Different organ classes have different properties, and
therefore it seems reasonable to suppose that the task of
separating a given organ class from all other classes might
be best achieved by learning the optimal feature for that
particular organ, rather than by training on the average
separation performance for all classes. Applying this in the
context of action recognition as in [17] the question would
be: Can one obtain better performance with a feature

learning model optimized specifically for “hand waving,”

for example, rather than using the same feature learning

model that simultaneously tries to classify, say, “running”

and all the other different actions studied?
It is normally time consuming and difficult to design a

new feature-learning model for every object class, but deep

learning requires very little modification. In our study, we

applied a model with the same basic design for both visual

and temporal feature learning. Moreover, features of

different characteristics can be learned by tuning the

hyperparameters in the learning model, as was studied in [9].
In principle one would optimize the hyperparameters in

Table 1 separately for each object class, but the computational

resources required to do this exceeded what was available

for this study. Instead, during the hyperparameter optimiza-

tion process in Section 5.2 and Table 1, we picked parameter

sets with the best F1-scores of each object class along the

trajectory of optimization process. The best F1-scores for each

object class along the optimization process of overall

classification accuracies in Table 1 are shown in Table 2 as

F1tmp, with their corresponding hyperparameter sets.
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Fig. 7. Scatter plots showing 1,500 randomly sampled patches of the organ object classes (red: liver, yellow: heart, green: kidney, blue: spleen) in the
training dataset with each of the feature learning methods and projected onto 2D space using PCA.



We then train one-versus-all classifiers by logistic

regression using the parameter sets with the same inputs

as the multiclass classifier from the convolutional network.

The one-versus-all classification accuracies with equal

number of true/false labels, optimized for each object class,

is shown as accopt in Table 2. For the results using visual

and temporal features only, the accuracy with first auto-

encoder layer is denoted by acclþ=� if accopt was achieved by

second autoencoder layer, whereas acclþ=� represents the

accuracy with second autoencoder layer if the accopt was

achieved by first autoencoder layer. A shallow combined

representation of multimodal features [27] is examined as

well for both hierarchy autoencoders, and their classifica-

tion accuracies both with first (accl1 ) and second (accl2 )

autoencoder layers are shown in the right-hand section of

the table. The final classifier networks with the context-

specific feature learning model for each object class is

shown in Fig. 9.
Here we observe that:

1. Organ-specific parameter selections generally give
improved performance, although not always by a
large amount.

2. Temporal features alone give good classification
performance for heart, kidney, and spleen. (Note:
The heart was classified on a different dataset
because of its absence on the validation set—see
the caption to Fig. 8.

3. Generally, the second-layer visual features showed
better performance than the first-layer features,
while this was not evident for the temporal features,
which had a worse performance for liver and heart.
We hypothesize that this may be related to the fact
that the second-layer visual features capture a larger
region (e.g., 48� 48) than the second-level temporal
features (e.g., 24� 24).

4. Shallow combination of visual and temporal features
showed better performance than features of either
modality alone for liver and “not-of-interest” (NOI)
tissues, although the increase in accuracy for liver
was small.

It is also possible to draw some conclusions from these
results about the parameter settings for deep network
models with SAE: 1) The optimized sparsity � in the second
layer tends to be lower than that in the first layer to capture
fewer and larger size higher hierarchy features. 2) The
weight decay � and regularization � affect the behavior of
the autoencoder less than the sparsity parameter �. 3) In the
temporal domain, a larger feature set (256) was selected for
organs than for NOI tissues (16 features)—this is probably
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TABLE 2
Model and Hyperparameters of Visual and Temporal Features for Each Organ Class for the Context-Specific Feature Learning

The classification accuracy with the chosen model for each organ class accopt is shown for the CV dataset for all organs except for heart (which
does not appear in the CV data and so is tested on a subset of training dataset). Accuracy with higher/lower autoencoder layer (acclþ=�) is
compared with that of the first/second layer giving the optimal accuracy (accopt). The average F1-score in picking the parameters in the
optimization process in Table 1 is also shown: F1tmp (NOI = Not of interest).

Fig. 9. A conceptual visualization of the usage of context-specific
features with SAE in classification. Patches of different modalities are
sampled from the dataset and go through different feature networks to
be classified as an object part of an organ category.Fig. 8. Scatter plots showing 1,500 randomly sampled patches of a

different subset of the training dataset and the CV liver patient dataset.
The patches are processed and displayed in the same way as for Fig. 7.
Since the scans of the CV dataset are focused on the kidneys, heart
does not appear in those images due to its anatomical location;
therefore heart is absent in the CV dataset.



because NOI does not represent a specific object class, and

so the fewer features are used, the less prone the model is to
overfitting specific background entities in the training data.

6 PART-BASED MULTI-ORGAN DETECTION

From the results in Table 2, we chose: TE-L1-256 features for
heart, TE-L2-256 for kidney and spleen, the combined L1-16

features for NOI, and the combined L1-256 features for
liver. Some of the part-based organ detection results in
training, CV, and the test dataset are shown in Fig. 10. As
might be expected, the results reflect the organs at which
the image datasets themselves were targeted. Thus, liver is
better recognized on the scans whose purpose was to image

liver tumors, and kidney in renal cell carcinoma patients.

6.1 Probabilistic Part-Based Organ Detection

As more patches are classified correctly than incorrectly to
their corresponding category of organ, we perform prob-
abilistic part-based organ detection, first by generating a
probability map for each organ, and then by selecting a
threshold to generate a binary mask, using the features

selected in Table 2. The probability map is generated using
1,000 randomly sampled patches, where the sampling
location is on the nonbackground regions and the regions
not affected by the breathing motion. Consider the prob-
ability map for organ A. We iterate through all patches and

for each pixel location ði; jÞ of the map, we increase its score
for being an organ A by 1 unit if the location ði; jÞ is in a
patch classified as the organ A. On the other hand, if ði; jÞ is
in the patch but the classifier returns a different class, we
subtract 0.2 from the score. The final scores after all patches
have been considered is normalized by dividing by the

maximum score in the image. The importance of including
the NOI class in all our analyses is thus clear. An example of
a probability map is shown in Fig. 11.

For the final organ detection, we perform a number of

simple postprocessing steps. From the probability map, we
obtain the largest, contiguous region for which the prob-
ability is larger than a preset threshold, except for kidney,

where we get two such regions using our prior anatomical
knowledge that there are more likely to be two kidneys than
one. There are cases where only one kidney appears in the
image, and these cases are accounted for by ignoring any

regions that are smaller than 200 pixels. The thresholds are
organ-specific (see Table 3) and were selected by examining
the pixel-wise precision and recall on the CV dataset. We
then apply convex hull processing to the final regions for

each object category to outline the regions smoothly.
Some examples of the final visualization of multi-organ

detection are shown in Fig. 12. Organs are generally well
detected, but the performance of the algorithm varies from

patient to patient. Encouragingly, even unusually large
livers and those with metastases are correctly assigned to
the liver organ class. Notice that this method of performing
organ recognition does not lead to mutually exclusive

regions, something which is a consequence of indepen-
dently generating and processing the probability maps for
each organ.
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Fig. 10. Classification results of part-based organ detection (yellow: liver, magenta: heart, cyan: kidney, red: spleen, blue: NOI). (a), (b): Liver patient
training dataset, (c), (d): kidney patient CV dataset, (e), (f): liver patient from a clinical trial. The patch size for liver and heart is 16� 16, for kidney
27� 27, spleen 18� 18, and for NOI 24� 24. The various parameters, including the patch sizes for each organ class, are chosen based on the
results shown in Table 2.

Fig. 11. Source image of a liver tumor patient (a), with probability maps for: (b) liver, (c) heart, (d) kidney, and (e) spleen.

TABLE 3
Selected Threshold and Pixel-Wise Precision/Recall with the
Threshold for the Organ Classes on the CV Dataset, Except

Heart, Which Was Validated on the Training Dataset

Object-wise precision/recall was validated on the test dataset of a
clinical trial.



Pixel-wise precision and recall scores on the CV kidney
patient dataset, and object-wise precision and recall scores
on the test liver patient dataset from a clinical trial are
shown in Table 3. All of the organs types are well detected,
with average 0.60 in precision and 0.80 in recall.

7 DISCUSSION AND FUTURE WORK

Although our model showed good performance, it is likely
that even better results would be achieved if the training
were performed on a larger dataset. Future work collecting
a large dataset for full training, CV, and test on various
patient studies should lead to interesting results. A further
area of research would be to investigate the balance
between tightly controlling the variability in the input data
(for example, by standardizing the MR sequence para-
meters and/or preselecting the patients) and providing the
algorithms with more heterogeneous data. The former case
would presumably lead to better classification in test
images that resembled the training data, while the latter
might lead to models that are more widely applicable but
have poorer performance in individual cases.

Optimization was performed with a coordinate ascent-
like paradigm using average classification accuracies, and

the best model for each organ category was chosen by
examining the trajectories of the performance evaluation
scores for each organ class. Even though we started from an
empirically “good” set of hyperparameters, it is possible that
the coordinate ascent ended up in a local optima. It would be
interesting to do a full parameter search for each organ
category or use some recently introduced methods for
optimizing hyperparameters without a full search [56], [57].

PCA was chosen for the main baseline method of
unsupervised feature learning for comparison as it is the
most widely used one. Although, even when not as widely
used as PCA, sparse coding [47] or Independent Component
Analysis [58] with max-pooling have somewhat closer
relation to the suggested model as these allow learning an
overcomplete feature set. Therefore, it will also be meaningful
to compare these to the suggested method, as well as with
some of the other deep learning architectures for unsuper-
vised feature learning, such as deep belief networks [18], [21],
[41], [44] (with RBM) or convolutional networks [16], [59]
(possibly initializing each layer using autoencoders).

For the reasons alluded to in the introduction, the datasets
used for this research cannot be made public in the foresee-
able future. However, a study performing multimodal brain
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Fig. 12. Some examples of the final multiorgan detection (yellow: liver; magenta: heart; cyan: kidney; red: spleen) on the training dataset (first
row), CV dataset (second row), and test dataset (third row). Liver and kidney are well detected, whereas spleen is less well detected. In some
images, the detected heart region also contains aorta ((a) and (i)), which is probably because the signal uptake pattern in the aorta and the heart
are similar. The liver class detected includes both normal appearing tissues and tumor tissues. Liver tumor is seen in most of the liver patient
images (first and third row), with some largely abnormal liver shapes ((e) and (m)).



tumor analysis using a related approach has been described
in [34], as part of a brain tumor segmentation challenge.
There, we used a combined approach of unsupervised
feature learning, clustering, and one-versus-all classification
with logistic regression. The data are publicly available and
the result with this approach is compared with a number of
the other popular methods.

8 CONCLUSION

Visual and temporal hierarchical features have been learned
from roughly labeled DCE-MRI images of patients with
different types of tumor, using a deep learning approach.
By contrast with the usual object-detection environment, the
challenges for object detection in patient datasets are as
follows: 1) The organs with diseases are sometimes grossly
abnormal, 2) the shape of the organs shown by slices in a 3D
medical image differ between slices in ways that are
sometimes challenging even for a trained radiologist, and
3) it is hard to obtain many training datasets and the ground
truth is hard to define. With unsupervised hierarchical
feature learning, organ classes are learned without detailed
human input, and only a “roughly” labeled dataset was
required to train the classifier for multiple organ detection.

Part-based multi-organ detection was performed on a
heterogeneous patient dataset of three independent studies
with different disease foci. Training was done only in one
dataset and object recognition was done on an unseen
dataset with good performance. This method can accom-
modate a range of organ types, including those with
metastases and very abnormal shapes. To the best of our
knowledge, there have been no previous studies using deep
learning for organ detection in heterogeneous MRI datasets
from patients, and the results of this pilot study are
promising. Further applications may be developed from
this, with additional segmentation algorithms being com-
bined with our deep learning approach.
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