
Extracting Structured Data from Web Pages

Arvind Arasu
Stanford University

arvinda@cs.stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

ABSTRACT
Many web sites contain large sets of pages generated using a com-
mon template or layout. For example, Amazon lays out the author,
title, comments, etc. in the same way in all its book pages. The
values used to generate the pages (e.g., the author, title,...) typi-
cally come from a database. In this paper, we study the problem of
automatically extracting the database values from such template-
generated web pages without any learning examples or other sim-
ilar human input. We formally define a template, and propose a
model that describes how values are encoded into pages using a
template. We present an algorithm that takes, as input, a set of
template-generated pages, deduces the unknown template used to
generate the pages, and extracts, as output, the values encoded in
the pages. Experimental evaluation on a large number of real input
page collections indicates that our algorithm correctly extracts data
in most cases.

1. INTRODUCTION
The World Wide Web is a vast and rapidly growing source of

information. Most of this information is in the form of unstruc-
tured text, making the information hard to query. There are, how-
ever, many web sites that have large collections of pages contain-
ing structured data, i.e., data having a structure or a schema. These
pages are typically generated dynamically from an underlying struc-
tured source like a relational database. An example of such a col-
lection is the set of book pages in Amazon [2] (Figure 1). The data
in each book page has the same schema, i.e., each page contains the
title, list of authors, price of a book and so on.

This paper studies the problem of automatically extracting struc-
tured data encoded in a given collection of pages, without any hu-
man input like manually generated rules or training sets. For in-
stance, from a collection of pages like those in Figure 1 we would
like to extract book tuples, where each tuple consists of the title,
the set of authors, the (optional) list-price, and other attributes (Fig-
ure 2).

Extracting structured data from the web pages is clearly very
useful, since it enables us to pose complex queries over the data.
Extracting structured data has also been recognized as an impor-
tant sub-problem in information integration systems [7, 25, 17, 11],
which integrate the data present in different web-sites. Therefore,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

Figure 1: Two book pages from Amazon

there has been a lot of recent research in the database and AI com-
munities on the problem of extracting data from web pages (some-
times called information extraction (IE) problem).

An important characteristic of pages belonging to the same site
and encoding data of the same schema, is that the data encoding
is done in a consistent manner across all the pages. For example,
in both the pages of Figure 1, the title of the book appears in the
beginning followed by the word “by,” followed by the author(s). In
other words, the above pages are generated using a common “tem-
plate” by “plugging-in” values for the title, list of authors and so on.
Most of the information extraction techniques proposed so far, and
the technique that we propose in this paper, exploit the template-
based encoding for extracting data from the pages. Specifically, the
techniques use either a partial or complete knowledge of the tem-
plate used to generate the pages, to extract the data. For example,
in Figure 1, the price of a book can be extracted by retrieving the
text immediately following the template-text “OurPrice :.”

Page A B C · · ·
1 MySystem . . . Aron . . . (NULL) · · ·
2 Godel, . . . Douglas . . . 20.00 · · ·
...

...
...

...
...

Figure 2: Extracted Data

The primary difference between various information extraction
techniques lies in how the knowledge of the template is acquired
by the extraction system. The earliest information extraction tech-
niques rely on a human to encode knowledge of the template into
a program called wrapper, which then extracts data. In Hammer
et al. [12] a human expresses some part of the template as declar-
ative rules, and a “wrapper generator” converts these rules into a
wrapper. More recent systems like XWRAP [18], WIEN [15],
STALKER [19], and SOFTMEALY [13] use human generated train-
ing examples that identify data in a small number of pages, to learn
knowledge of the template.

Unlike the previous work described above, our goal is to deduce
the template without any human input, and use the deduced tem-
plate to extract data. There are at least two reasons why absence
of human input is beneficial. First, human input is time consum-
ing and error-prone. A single web page used in training could po-
tentially contain a large number of data values of interest, and the
human trainer has to identify each one of them; and the training
could require many such human annotated pages. Second, many
collections of pages are semi-structured, and contain optional at-
tributes. If an optional attribute appears very rarely, it is possible
for the human trainer to miss the optional attribute altogether. Both
the above problems are further aggravated by the fact that, in prac-
tice, templates change very frequently, requiring repeated human
intervention.

There are two fundamental challenges in automatically deducing
the template. First, and foremost, there is no obvious way of differ-
entiating between text that is part of template and text that is part of
data. Any word could be part of template, or data or both. Note that
it is not necessary for a word that is part of template to occur in ev-
ery page (e.g., “ListPrice :” in Figure 1). Conversely, a common
English word like “is” could occur as part of data in every input
page. Second, the schema of data in pages is usually not a “flat”
set of attributes, but is more complex and semi-structured. The
schema could contain non-atomic attributes that are sets of values
(e.g., set of reviews of a book), or attributes that are optional (e.g.,
“list” price in Figure 1). The existence of complex schema makes
both the tasks of definition and automatic recognition of template
harder. In fact the existence of complex schema makes our problem
very closely related to the problem of regular expression inference
which is known to be very hard (see Section 2.4).

We know of only two previous work on automatic extraction,
namely, ROADRUNNER [5] and IEPAD [4]. There are fundamen-
tal differences, both in problem formulation and solution approach,
between our work and the above two. Both ROADRUNNER and
IEPAD make the simplifying assumption that an HTML tag is
always part of the template of the page. Although, statistically,
HTML tags do tend to occur in template, there are a significant
number of cases where they occur within data. The implications
of the above assumption and the differences in our solution ap-
proaches are discussed in Section 7.

We make two clarifications regarding our assumptions and goals.
First, our goal is not to try to semantically name the extracted data.
We assume that renaming, for example, attribute A in Figure 2 as
“TITLE”, is done as a postprocessing step, possibly with human

help. Second, we assume that our input pages conform to a com-
mon schema and template. We do not consider the problem of au-
tomatically obtaining such pages from web sites. It is reasonably
easy for a human to identify web collections of interest that have a
common schema and then run a crawler to gather the pages.

The rest of the paper is organized as follows. Section 2 provides
the preliminary definitions, proposes a model for page creation and
formally states the data extraction problem. Section 3 provides a
brief overview of our algorithm, EXALG, for solving the extraction
problem. EXALG described in greater detail in sections 4 and 5.
Section 6 describes our experiments, while Section 7 describes re-
lated work.

2. MODEL, PROBLEM FORMULATION
In this section we formally define structured data, the kind of

data that we are hoping to extract from the web pages. We also
propose a model for page creation that describes how data is en-
coded using a template. Finally, we formulate the data extraction
problem that we are trying to solve in this paper.

2.1 Structured Data
Structured Data is any set of data values conforming to a com-

mon schema or type. A type is defined recursively as follows [1]:

1. The Basic Type, denoted by B, represents a string of tokens.
A token is some basic unit of text. For the rest of the paper,
we define a token to be a word or a HTML tag.

2. If T1, . . . , Tn are types, then their ordered list 〈T1, . . . , Tn〉
is also a type. We say that the type 〈T1, . . . , Tn〉 is con-
structed from the types T1, . . . , Tn using a tuple constructor
of order n.

3. If T is a type, then {T} is also a type. We say that the type
{T} is constructed from T using a set constructor.

We use the term type constructor to refer to either a tuple or set
constructor. An instance of a schema is defined recursively as fol-
lows.

1. An instance of the basic type, B, is any string of tokens.

2. An instance of type 〈T1, T2, . . . , Tn〉 is a tuple of the form
〈i1, i2, . . . , in〉 where i1, i2, . . . , in are instances of types
T1, T2, . . . , Tn, respectively. Instances i1, i2, . . . , in are
called attributes of the tuple.

3. An instance of type {T} is any set of elements {e1, . . . , em},
such that ei(1 ≤ i ≤ m) is an instance of type T .

We also use term value to denote an instance. Also, string denotes
a string of tokens. Sometimes type constructor symbols, {} and 〈〉,
are subscripted to help us refer to the corresponding type construc-
tors.

Example 2.1. Consider a set of pages, each containing informa-
tion about a book. Each page contains the title, the set of authors,
and the cost of a book. Further, each author has a first name and
a last name. Then the schema of the data encoded in the pages is
S1 = 〈B, {〈B,B〉τ3}τ2 ,B〉τ1 . Schema S1 has two tuple construc-
tors, τ1 and τ3, and one set constructor, τ2. An instance of S1 is
the value x1 = 〈t, {〈f1, l1〉, 〈f2, l2〉}, c〉 where, for example, t de-
notes the title of the book, f1 denotes the first name of an author
and c the cost. �

Schemas and values can be equivalently viewed as trees. Fig-
ure 3 shows the tree representation of schema S1 and value x1.
A sub-tree of a schema tree is also a schema, and is called a sub-
schema of the original schema. A sub-value of a value is similarly
defined.

2.2 Model of Page Creation
We now describe a model for page creation. According to our

model (Figure 4), a value x (taken from a database shown on the
left) is encoded into a page using a template T . We denote the page
resulting from encoding of x using T by λ(T, x).

< >

{ }

< >

B B

B B

< >

{ }s1 s6

< > < >

s2 s3 s4 s5

τ

τ

τ1

2

3

Figure 3: Example Schema and Instance

λ (T,x)

(T)

x

Template

Database

Output Page

Figure 4: Model for Page Creation

Definition 2.1. (Template) A template T for a schema S, is de-
fined as a function that maps each type constructor τ of S into an
ordered set of strings T (τ), such that,

1. If τ is a tuple constructor of order n, T (τ) is an ordered set
of n + 1 strings 〈Cτ1, . . . , Cτ(n+1)〉.

2. If τ is a set constructor, T (τ) is a string Sτ (trivially an or-
dered set of unit size). �

Optionally, we represent template T as TS to denote that T is
defined for schema S. For case 1 (resp. case 2) of Definition 2.1,
we say string Cτi (1 ≤ i ≤ n + 1) (resp. string Sτ) is associated
with type constructor τ . If a string is associated with a type con-
structor in a template, any token that occurs within the string is also
said to be associated with the type constructor.

Example 2.2. A template T1
S1 for Schema S1 of Example 2.1

is given by the mapping, T1(τ1) = 〈A,B, C, D〉, T1(τ2) = H ,
T1(τ3) = 〈E,F, G〉 (each letter A − H is a string). Template
T1

S1 tells us how to encode a page from a value. For example, the
encoding λ(T1, x1) is the string AtBEf1F l1GHEf2F l2GCcD.

For concreteness, let strings (A−H) be as shown in Figure 5(a)
(ε represents an empty string and represents white space). The
web page corresponding to the book tuple 〈 C Programming Lan-
guage, { 〈 Brian, Kernighan〉, 〈 Dennis,Ritchie 〉 }, $30.00 〉 is
shown in Figure 6(b). �

A 〈html〉〈body〉〈b〉Book :〈/b〉
B by
C 〈b〉Cost :〈/b〉
D 〈/body〉〈/html〉

E, G ε
F
H and

Figure 5: Template of Example 2.2

〈html〉
〈body〉

〈b〉Book :〈/b〉C Programming Language
by Brian Kernighan and Dennis Ritchie
〈b〉Cost :〈/b〉$30.00

〈/body〉
〈/html〉

Figure 6: Template and Page of Example 2.2

Formally, given a template, TS , the encoding λ(T, x) of an in-
stance x of S is defined recursively in terms of encoding of sub-
values of x. Since it causes no ambiguity, we use the λ(T, x) nota-
tion for values x that are instances of sub-schema of S.

1. If x is of basic type, B, λ(T, x) is defined to be x itself.

2. If x is a tuple of form 〈x1, . . . , xn〉τt
, λ(T, x) is the string

C1 λ(T, x1) C2 λ(T, x2) . . . λ(T, xn) Cn+1. Here, x is an
instance of sub-schema that is rooted at type constructor τt

in S, and T (τt) = 〈C1, . . . , Cn+1〉.

3. If x is a set of the form {e1, . . . , em}τs
, λ(T, x) is given by

the string λ(T, e1) S λ(T, e2) S . . . S λ(T, em). Here x is
an instance of sub-schema that is rooted at type constructor
τs in S , and T (τs) = S.

We represent a template using an infix notation. For example,
the template of Example 2.2 is represented as 〈A ∗ B{〈E ∗ F ∗
G〉}HC ∗ D〉. The “∗” symbol is similar to UNIX wild-card, and
indicates positions where values of basic type appear in an encod-
ing using the template. Note that string H , associated with τ2 of
Example 2.2 is placed as subscript of {}.

Our model captures the requirement that the web pages be gen-
erated in a consistent manner. In particular, it ensures that values
for the same attribute in a tuple occur in the same relative position
with respect to the values of other attributes, in all the pages. In
Example 2.2 above, the book name always occurs before the list of
authors and the price. The encoding of the set captures the intuition
that elements of a set are usually listed contiguously, and that the
elements of the set are formatted in a similar manner.

2.3 Optionals and Disjunctions
As we saw in Section 2.1, a schema is built from two kinds of

type constructors, tuple and set, and the basic type B. There are two
other kinds of type constructors that occur commonly in the schema
of web pages, namely, optionals and disjunctions. For example the
list-price of a book in Amazon book pages is optional since only
pages for books sold at a discount price have list-price information.
As an example of a disjunction, an address information in a web
page could be in one of two formats, based on whether the address
is a US address or not, in which case the schema of the address is
a disjunction of the schema for US addresses and the schema for
non-US addresses.

We view optionals and disjunctions as special type constructors
built from set and tuple constructors. If T is a type, then (T)?
represents the optional type T , and is equivalent to {T}τ with the

constraint that in any instantiation τ has a cardinality of 0 or 1.
Similarly, if T1 and T2 are types, (T1 | T2) represents a type which
is disjunction of T1 and T2, and is equivalent to 〈{T1}τ1 , {T2}τ2〉τ ,
where for every instantiation of τ exactly one of τ1, τ2 has cardi-
nality one and the other, cardinality zero.

The above view of optionals and disjunctions enables us to use
our model of page creation for schema involving optionals and dis-
junctions without any modification.

2.4 Problem Statement
Extract Problem: Given a set of n pages, pi = λ(T, xi) (1 ≤ i ≤
n), created from some unknown template T and values {x1,. . .,xn},
deduce the template T and values {x1, . . . , xn} from the set of
pages alone.

In its general form, EXTRACT problem is ill-defined since there
are several templates and values that could have created a given set
of pages, as the following example illustrates.

Example 2.3. Consider three input pages p1 = Aa1Bb1Cc1D,
p2 = Aa2Bb2Cc2D, p3 = Aa3Bb3Cc3D. These pages can be
created from the template 〈A ∗B ∗C ∗D〉 and a corresponding set
of values1. For instance, the value used to create p1 is 〈a1, b1, c1〉.
These pages can also be created from the template 〈A∗C ∗D〉 and
a corresponding set of values. For this template, the value used to
create p1 is 〈a1Bb1, c1〉. �

However, given a set of real web pages from a site like Amazon, a
human rarely has any ambiguity in picking the right template and
values encoded in the pages. Our goal is to solve the EXTRACT

problem for real web pages, i.e., produce the template and values
that would be considered correct by a human.

Example 2.4. We use the instance of EXTRACT problem with the
set of 4 pages Pe = {pe1, pe2, pe3, pe4} shown in Figure 7 as a
running example. Each page in Pe contains the title and the set of
reviews of a book. Each review contains the name of the reviewer,
the rating given by the reviewer and the text of her comments.
The entire text of comments is not shown due to space limitations.
Arguably, the pages were created from template Te, and values
{xe1, xe2, xe3, xe4} shown in Figure 9 and Figure 8, respectively.
The schema of the values is Se = 〈B, {〈B,B,B〉τe1}τe2〉τe3 . The
correct solution of the EXTRACT problem for the input Pe is the
template Te and values {xe1, xe2, xe3, xe4}. �

xe1 : Databases { 〈 John, 7, . . . 〉 }
xe2 : Data Mining { 〈 Jeff, 2, . . . 〉, 〈 Jane, 6, . . . 〉 }
xe3 : Query Opt. { 〈 John, 8, . . . 〉 }
xe4 : Transactions φ

Figure 8: The correct values
EXTRACT problem is an instance of regular grammar inference

problem from positive examples (see [20] for a survey). For exam-
ple, the pages generated by Template T = 〈A ∗ B
{〈C ∗ D〉}〉 belong to language represented by regular expression
L = AΣ∗B(CΣ∗D)∗ (note slightly different semantics of ”*” in
T and L), where Σ denotes the alphabet. Conversely, any string of
L is also generated by T . Hence, a solution for regular grammar in-
ference problem can be used to solve EXTRACT. This is currently
not feasible for several reasons. The theoretical notion of infer-
ence “in the limit” with positive examples alone is undecidable [9].
Hence, known applications of regular grammar inference problem
use application specific heuristics for both problem formulation and

1In many, but not all, cases, a template and a page created from the
template uniquely identifies the value encoded in the page

〈
〈html〉1〈body〉2

〈b〉3 Book4 Name5 〈/b〉6 *
〈b〉7 Reviews8 〈/b〉9
〈ol〉10
{〈

〈li〉11
〈b〉12 Reviewer13 Name14 〈/b〉15 *
〈b〉16 Rating17 〈/b〉18 *
〈b〉19 Text20 〈/b〉21 *

〈/li〉22
〉}
〈/ol〉23

〈/body〉24 〈/html〉25
〉

Figure 9: The correct template

solution. We have found most such heuristics inapplicable to our
problem. An example of such an application is XTRACT [8], a
system for learning DTDs from XML documents. XTRACT is
designed to learn regular expressions of length of magnitude of
10s of symbols. It uses heuristics “inspired by real-life DTDs” to
enumerate a small set of potential regular expressions, and uses
MDL [22] principle to pick the “best” one. The size of regular ex-
pressions (templates) involved in our problem can often be greater
than 10000. Further, the heuristics used by XTRACT does not
generate any regular expression involving Σ∗, while it is important
for us to consider such regular expressions.

2.5 Miscellaneous Terminology, Definitions
An occurrence of a token in a template (resp. value, page) is

called a template-token (resp. value-token, page-token). Note the
distinction between a token and its occurrence. According to our
model, each page-token is created from either a template-token or a
page-token. Each template-token of Te in Figure 9 is subscripted to
help us refer to it subsequently. The page-tokens of Pe in Figure 7
that are created from a template-token have the same subscript as
the template-token. Two page-tokens are said to have the same role
if they have been generated by the same template-token. Therefore,
two page-tokens in Pe have the same role iff they have the same
subscript in Figure 9.

3. OVERVIEW OF OUR APPROACH
In this paper, we present an algorithm, EXALG to solve the

EXTRACT problem. Figure 10 shows the different sub-modules
of EXALG. Broadly, EXALG works in two stages. In the first
stage (ECGM), it discovers sets of tokens associated with the same
type constructor in the (unknown) template used to create the input
pages. In the second stage (Analysis), it uses the above sets to de-
duce the template. The deduced template is then used to extract the
values encoded in the pages. This section outlines the execution of
EXALG for our running example.

In the first stage, EXALG (within Sub-module FINDEQ) com-
putes “equivalence classes” — sets of tokens having the same fre-
quency of occurrence in every page in Pe. An example of an equiv-
alence class (call Ee1) is the set of 8 tokens {〈html〉, 〈body〉, Book,
. . . , 〈/html〉}, where each token occurs exactly once in every in-
put page. There are 8 other equivalence classes. EXALG retains
only the equivalence classes that are large and whose tokens occur
in a large number of input pages. We call such equivalence classes
LFEQs (for Large and Frequently occurring EQuivalence classes).
For the running example there are two LFEQs. The first is Ee1

shown above. The second, which we call Ee3, consists of the 5 to-

〈html〉1〈body〉2
〈b〉3 Book4 Name5 〈/b〉6 Databases
〈b〉7 Reviews8 〈/b〉9
〈ol〉10

〈li〉11
〈b〉12 Reviewer13 Name14 〈/b〉15 John
〈b〉16 Rating17 〈/b〉18 7
〈b〉19 Text20 〈/b〉21 . . .

〈/li〉22
〈/ol〉23

〈/body〉24 〈/html〉25
(a:pe1)

〈html〉1〈body〉2
〈b〉3 Book4 Name5 〈/b〉6 Query Opt.
〈b〉7 Reviews8 〈/b〉9
〈ol〉10

〈li〉11
〈b〉12 Reviewer13 Name14 〈/b〉15 John
〈b〉16 Rating17 〈/b〉18 8
〈b〉19 Text20 〈/b〉21 . . .

〈/li〉22
〈/ol〉23

〈/body〉24 〈/html〉25
(c:pe3)

〈html〉1〈body〉2
〈b〉3 Book4 Name5 〈/b〉6 Data Mining
〈b〉7 Reviews8 〈/b〉9
〈ol〉10

〈li〉11
〈b〉12 Reviewer13 Name14 〈/b〉15 Jeff
〈b〉16 Rating17 〈/b〉18 2
〈b〉19 Text20 〈/b〉21 . . .

〈/li〉22
〈li〉11

〈b〉12 Reviewer13 Name14 〈/b〉15 Jane
〈b〉16 Rating17 〈/b〉18 6
〈b〉19 Text20 〈/b〉21 . . .

〈/li〉22
〈/ol〉23

〈/body〉24 〈/html〉25
(b:pe2)

〈html〉1〈body〉2
〈b〉3 Book4 Name5 〈/b〉6 Transactions
〈b〉7 Reviews8 〈/b〉9
〈ol〉10
〈/ol〉23

〈/body〉24 〈/html〉25
(d:pe4)

Figure 7: Input pages of EXTRACT problem

kens: {〈li〉, Reviewer, Rating, Text, 〈/li〉}. Each token of Ee3

occurs once in pe1, twice in pe2 and so on. The basic intuition be-
hind LFEQs is that it is very unlikely for LFEQs to be formed by
“chance”. Almost always, LFEQs are formed by tokens associated
with the same type constructor in the (unknown) template used to
create the input pages. This intuition is easily verified for the run-
ning example where all tokens of Ee1 (resp. Ee3) are associated
with τe1 (resp. τe3) of Se in Te

2.
For this simple example, Sub-module HANDINV does not play

any role, but for real pages HANDINV detects and removes “in-
valid” LFEQs — those that are not formed by tokens associated
with a type constructor.

However, not all the tokens associated with τe1 are in Ee1. For
example, the token Name does not occur in Ee1 although it is as-
sociated with τe1 in Te. This happens because Name has multiple
“roles” — it is associated with two type constructors, namely, τe1

and τe3. EXALG tries to add more tokens to LFEQs by “differenti-
ating” roles of tokens using the context in which they occur. For
example, EXALG, infers (within Sub-module DIFFFORM)3 that
the “role” of Name when it occurs in Book Name is different from
the “role” when it occurs in Reviewer Name, using the fact that
these two occurrences always have different paths from the root
in the html parse trees of the pages. EXALG also infers (within
Sub-module DIFFEQ) that the role of 〈b〉 when it occurs in 〈b〉
BookName is different from the role, when it occurs in 〈b〉 Review,
using the fact that these two occur in different “positions” with re-
spect to the LFEQ Ee1. The former always occurs between to-
kens 〈body〉 and Book of Ee1, and the latter between tokens Book
and Reviews. Returning to token Name, let us refer to Name as
NameA when it occurs in Book Name and NameB when it occurs in
Reviewer Name. We call NameA and NameB dtokens (for differen-

2The subscript e1 (resp. e3) of Ee1 (resp. Ee3) has been chosen to
correspond to the subscript of τe1 (resp. τe3). This also explains
why there is no Ee2 — there are no tokens associated with τe2 in
Te.
3For exposition, the sequence of execution of EXALG described
here is slightly different from the actual sequence described in Sec-
tion 4. Actually, DIFFFORM executes before FINDEQ as suggested
by Figure 10.

tiated tokens). Now, EXALG computes the occurrence frequencies
of the dtokens (again within FINDEQ) and checks if they belong to
any of the existing LFEQs or form new ones. In this case, NameA

occurs exactly once in every page and is, therefore, added to Ee1.
Similarly, NameB is added to Ee3. Similarly, the dtokens formed
from 〈b〉 and 〈/b〉 are added to one of Ee1 and Ee3. The reader can
verify that the above step of differentiating tokens and adding them
to existing LFEQs increases the size of Ee1 (see Figure 11) from 8
to 13 and the size of Ee3 from 5 to 12.

EXALG enters the second stage when it cannot grow LFEQs, or
find new ones. In this stage, it builds an output template T ′S′

using
the LFEQs constructed in the previous stage. In order to construct
S′, EXALG first considers the root LFEQ — the LFEQ whose
tokens occur exactly once in every input page. In our running ex-
ample Ee1 is the root LFEQ. EXALG determines the positions be-
tween consecutive tokens of Ee1 that are non-empty4. A position
between two consecutive tokens is empty if the two tokens always
occur contiguously, and non-empty, otherwise. There are two non-
empty positions in Ee1: the position between tokens 6 (〈/b〉) and 7
(〈b〉), and between tokens 11 (〈ol〉) and 12 (〈/ol〉). The position
between the first (〈html〉) and the second (〈body〉) token of Ee1 is
empty since 〈body〉 always occurs immediately after 〈html〉. EX-
ALG generates a tuple constructor τ ′

e1 of order 2 (one attribute for
each non-empty position of Ee1) corresponding to Ee1. The first
non-empty position does not have any equivalence classes occur-
ring within it. EXALG uses this information to deduce that the type
of the first attribute of τ ′

e1 is B. The second non-empty position
(between 〈ol〉 and 〈/ol〉) always has zero or more occurrences of
Ee3. For this case, EXALG recursively constructs the type Te3 cor-
responding to Ee3, and deduces the type of the second attribute of
τ ′

e1 to be {Te3}τ ′
e2

. It can be verified that Te3 constructed by EX-
ALG is 〈B,B,B〉τ ′

e3
. The output schema, S′, produced by EXALG

is the type corresponding to root equivalence class, Ee1, which is
〈B, {〈B,B,B〉τ ′

e3
}τ ′

e2
〉τ ′

e1
.

EXALG constructs the output template T ′ by generating a map-

4The discussion of this stage of EXALG uses the fact that Ee1 and
Ee3 are ordered. We will discuss this in Section 4.

〈html〉 〈body〉 〈b〉 Book Name 〈/b〉
� �� �

C11

〈b〉 Reviews 〈/b〉 〈ol〉
� �� �

C12

〈/ol〉 〈/body〉 〈/html〉
� �� �

C13

Figure 11: Ee1 at end of ECGM module

(Differentiate Roles Using Format)

DiffFormat

FindEquiv
(Find Equivalence Classes)

(Handle Invalid Equivalence Classes)

HandInv

(Differentiate Roles Using Eq Class)
DiffEq

Equivalence Class Generation Module

Analysis Module

ConstTemp

(Construct Template)

(Extract Value)
ExVal

Template, Schema, Values

Input Pages

Figure 10: Modules of EXALG

ping from each type constructor in S′ to ordered set of strings. By
definition, since τ ′

e1 is a tuple constructor of order 2, T ′(τ ′
e1) is an

ordered set of 3 strings, 〈C11, C12, C13〉. EXALG constructs the
above 3 strings from tokens of Ee1. The string C11 is the ordered
set of tokens of Ee1, that occur before the first non-empty position:
〈html〉〈body〉 . . . 〈/b〉. The string C12 is the ordered set of tokens
between the first non-empty position and the second. The strings
C13 is similarly constructed (see Figure 11). EXALG infers that the
mapping T ′(τ ′

e2) is the empty string, since there is no “separator”
between consecutive occurrences of Ee3. The mapping T ′(τ ′

e3) is
constructed similar to the mapping T ′(τ ′

e1) described earlier.
The reader can verify that T ′ = Te and S′ = Se. We have

not described how EXALG extracts the data values. But for this
case, the values are uniquely defined given T ′ and Pe, and can
be verified to be equal to {xe1, xe2, xe3, xe4}. Therefore, EXALG

produces the correct output on our running example.

4. EQUIVALENCE CLASSES
This section defines an equivalence class, and describes how

equivalence classes are used in EXALG. Except when we refer
to our running example, the discussion of sections 4, 5, and 6 is in
the context of an arbitrary set of pages P = {p1, . . . , pn}, where

pi = λ(TS , xi)(1 ≤ i ≤ n). Schema S consists of type con-
structors {τ1, . . . , τk}. The pages {p1, . . . , pn} form the input to
EXALG. Note, however, that EXALG does not have knowledge of
T , S and {x1, . . . , xn}.

Definition 4.1. (Occurrence Vector) The occurrence-vector of a
token t, is defined as the vector 〈f1, . . . , fn〉, where fi is the num-

ber of occurrences of t in pi. �

Definition 4.2. (Equivalence Class) An equivalence class is a
maximal set of tokens having the same occurrence-vector. �

The set of equivalence classes define a partition over the set of to-
kens that occur in P . As we saw in Section 3, there are 9 equiva-
lence classes (including Ee1 and Ee3) for pages Pe of our running
example. The occurrence vector of tokens in Ee1 is 〈1, 1, 1, 1〉 and
the occurrence vector of tokens in Ee3 is 〈1, 2, 1, 0〉.

We are interested in equivalence classes because, in practice, to-
kens associated with the same type constructor in T , tend to occur
in the same equivalence class. In our running example, 8 of the
13 tokens associated with τe1 in Te, occur in Ee1. Observe that
all occurrences of these 8 tokens are generated by unique template-
tokens. For example, all occurrences of token 〈html〉 are generated
by template-token 〈html〉1. One the other hand, a token like Name
that does not occur in Ee1 (in spite of being associated with τe1 in
Te) is generated by more than one template-token, namely, Name5
and Name14. A token is said to have unique role, if all the occur-
rences of the token in the pages, is generated by a single template-
token.

Observation 4.1. Tokens associated with the same type construc-
tor τj in T that have unique-roles occur in the same equivalence
class. �

If, as in Observation 4.1, all the tokens of an equivalence class, E ,
have unique roles and are associated with the same type constructor
τj of S, we say that E is derived from τj . We call an equivalence
class valid if it is derived from some τj , and invalid, otherwise.
For instance, in our running example, the equivalence class {Data,
Mining, Jeff, 2, Jane, 6} (with occurrence vector 〈0, 1, 0, 0〉)
is invalid. However, observe that the tokens in this equivalence
class occur very infrequently—in just a single page. The above
observation is valid in general for real web pages and is formalized
below. Define support of a token, to be the number of pages in
which the token occurs. The support of an equivalence class is the
common support of the tokens in it. The size of an equivalence
class is the number of tokens in the equivalence class.

Observation 4.2. For real pages, an equivalence class of large
size and support is usually valid. �

We call such equivalence classes LFEQs (for Large and Fre-
quent EQuivalence class). Observation 4.2 is true because LFEQs
are rarely formed by “chance”. Two tokens rarely have the same
occurrence frequency in a large number of pages unless they oc-
cur in the pages due to the same “reason”. Typically, the number
of times two type constructors are instantiated is not the same in
every input page5. Therefore, tokens associated with different type
constructors usually do not occur in the same equivalence class.
Tokens generated by value-tokens (e.g., Databases in our running
example) usually occur infrequently and therefore do not occur in
an LFEQ.

5This statement is not valid if Schema S is not in “canonical” form
(e.g., 〈〈B〉τ1 , 〈B〉τ2〉). However, for any schema there always exists
a “structurally equivalent” schema in canonical form (e.g., 〈B,B〉
for the example schema above).

p :

Span of first occurrence
� �� �

t1 . . .
����

Pos(1)

t2 . . .
����

Pos(2)

t3 . . .

Span of second occurrence
� �� �

t1 . . .
����

Pos(1)

t2 . . .
����

Pos(2)

t3

Figure 12: Occurrence and span of an occurrence of equiva-
lence class

Observation 4.2 forms the crux of our extraction technique, which
can be loosely summarized as follows: since typically LFEQs con-
sist only of tokens associated with the same type constructor in the
(unknown) input template, use LFEQs to deduce the template and
schema.

There are two main obstacles that we must overcome in order
to make the above idea feasible. First, note that Observation 4.2
is heuristic. There is no guarantee that all the LFEQs for a set of
pages satisfy Observation 4.2. In practice, we have observed that
there are always some invalid LFEQs. Second, an LFEQ, even if it
is valid, only contains tokens that have unique roles, and therefore,
only contains partial information about the template used to gener-
ate the pages. We address both these obstacles in this section. But,
in order to do so, we observe a few properties that valid equivalence
classes satisfy.

4.1 Properties of Equivalence classes

Definition 4.3. (Ordered Equivalence Classes) An equivalence
class is ordered, if its tokens can be ordered 〈t1, . . . , tm〉, such
that, for every page pi (1 ≤ i ≤ n), and every pair of tokens tj , tk

(1 ≤ j < k ≤ m),

1. If tj occurs at least l times in pi, the lth occurrence of tj in
pi occurs before the lth occurrence of tk in pi, and

2. If tj occurs at least (l+1) times in pi, the (l+1)st occurrence
of tj in pi is after the lth occurrence of tk in pi.

We denote the above ordered equivalence class by 〈t1, . . . , tm〉. �

Let E = 〈t1, . . . , tm〉 be an ordered equivalence class, and let the
tokens of E occur f times in page pj . Then, we say that E oc-
curs f times in pj . The ith occurrence of E refers collectively to
the ith occurrence of tokens t1, . . . , tm in pj . The span of the ith

occurrence of E in pj is the text starting at (and including) ith oc-
currence of t1 and ending at (and including) ith occurrence of tm
in pj . The span of each occurrence of E is sub-divided into (m−1)
positions, namely, Pos(1), . . . , Pos(m−1). Pos(k) (1 ≤ k < m)
of ith occurrence of E in pj denotes the text starting at (but not in-
cluding) ith occurrence of tk and ending at (but not including) ith

occurrence of tk+1. Figure 12 illustrates the span and and Pos(i)
(1 ≤ i ≤ 2) for two occurrences of an equivalence class 〈t1, t2, t3〉
in a page.

Definition 4.4. (Nesting of Equivalence classes) A pair of equiv-
alence classes, Ei and Ej is nested if,

1. The span of any occurrence of Ei does not overlap with the
span of any occurrence of Ej , or

2. The span of all occurrences of Ej is within Pos(p) of some
occurrence of Ei for some fixed p; or vice-versa.

A set of equivalence classes {E1, . . . , En} is nested if every pair of
equivalence classes of the set is nested. �

Observation 4.3. A valid equivalence class is ordered and a pair
of two valid equivalence classes is nested. �

It can be verified that Ee1 and Ee3 are ordered. The set {Ee1, Ee3}
is nested since the span of each occurrence of Ee3 is always within
Pos(5) of an occurrence of Ee1.

4.2 Handling Invalid Equivalence classes
As we mentioned earlier, there are always some invalid LFEQs

that are formed, for most input sets of web pages. However, typ-
ically invalid LFEQs are either not ordered or not nested with re-
spect to other LFEQs. Module HANDINV takes as input a set
of LFEQs (determined by FINDEQ), detects the existence of in-
valid LFEQs using violations of ordered and nesting properties,
and “processes” the invalid LFEQs found — it discards some of
the LFEQs completely, and breaks others into smaller LFEQs.
The output of HANDINV is an ordered set of nested (with high
probability valid, see Section 6) LFEQs. A detailed description of
HANDINV is given in the full version of the paper.

4.3 Differentiating roles of tokens
Recall that the fundamental idea of EXALG is to use LFEQs to

discover the template tokens. However, typically an LFEQ only
contains tokens that have unique roles. Therefore, not all template-
tokens can be discovered using LFEQs. This section presents a
powerful technique, called differentiating roles of tokens, that is
used in EXALG to discover a greater number (in practice, almost
all) of template-tokens. Briefly, when we differentiate roles of to-
kens, we identify “contexts” such that the occurrences of a token
in different contexts above necessarily have different roles. The
notion of a context should be clear when we present the two tech-
niques for differentiating roles used in EXALG.

The first technique for differentiating roles uses the html format-
ting information of input pages. An html page can be equivalently
viewed as a parse tree. An occurrence-path of a page-token is the
path from the root to the page-token in the parse tree. For instance,
the occurrence-path of the first 〈/b〉 in pe1 is 〈html〉〈body〉〈/b〉6.

Observation 4.4. In practice, two page-tokens with different oc-
currence paths have different roles. �

Equivalently, Observation 4.4 asserts that all page-tokens generated
by a template-token have the same occurrence-path. It can be ver-
ified that Observation 4.4 is valid for our running example. In the
full version of the paper, we use well-formed properties of html
pages to argue that Observation 4.4 is true for real-world pages and
templates.

The second technique for differentiating roles uses valid equiva-
lence classes, and is based on the following observation.

Observation 4.5. Let E be a valid equivalence class derived from
τi. The role of an occurrence of a token t, which is outside the span
of any occurrence of E , is different from the role of an occurrence
which is within the span of some occurrence of E . Further, the role
of an occurrence of t, which is within Pos(l) of some occurrence of
E , is different from the role of an occurrence of t, which is within
Pos(m) (m �= l) of some occurrence of E . �

Equivalently, Observation 4.5 asserts that all page-tokens generated
by a template-token occur within a fixed Pos(p) of E , or outside the
span of any occurrence of E . Observation 4.5 can be proved in a
straight-forward way based on the definition of our model. In our
running example, all page-tokens generated by template-token 〈b〉3
occur in Pos(2) of some occurrence of Ee1, and outside the span
of any occurrence of Ee3.

We differentiate roles of a token by identifying a set of contexts
for the token using Observation 4.4 or 4.5, such that, each occur-
rence of the token is within some unique context of the set; and,

6There is a bit of abuse of notation here. The 〈html〉 in the
occurrence-path above does not refer to start-tag, but to the html
“element” in the parse tree.

occurrences of the token in different contexts has different roles.
The set of contexts is the set of occurrence-paths of the token, if we
use Observation 4.4, and the set of positions of E , if we use Obser-
vation 4.5 with a valid equivalence class E . We use the term dtoken
(for differentiated token) to jointly refer to a token and a context,
identified by differentiation. For example, if we differentiate to-
ken 〈b〉 in our running example using Observation 4.4, 2 dtokens
are formed: one corresponding to the occurrence-path (context)
〈html〉〈body〉〈b〉, and the other to 〈html〉〈body〉〈ol〉〈li〉〈b〉. In-
stead, if we differentiate using Observation 4.5 with Ee1, 3 dtokens
are formed: the first corresponds to context defined by Pos(2) of
occurrences of Ee1, the second to context defined by Pos(3), and
the third to context defined by Pos(5).

A dtoken is almost like a token (a token is a dtoken with no con-
text). We extend the notation defined for tokens to dtokens. The fol-
lowing is a collection of statements and notation related to dtokens:
Each occurrence of a dtoken is generated by a template-token or a
value-token; by definition, each template-token generates a unique
dtoken; a dtoken is said to have a unique role if all occurrences of
the dtoken is generated by a single template token; a page can be
viewed as a string of dtokens.

4.3.1 Equivalence Classes and dtokens
For exposition, we have defined equivalence classes as sets of to-

kens. In fact, EXALG works with equivalence classes defined using
dtokens. Most of the discussion in this section admits a straightfor-
ward generalization from tokens to dtokens. We re-state the main
ideas in terms of dtokens.

An occurrence vector of a dtoken is the vector of occurrence fre-
quencies of the dtoken in the input pages. An equivalence class is
a maximal set of dtokens having the same occurrence vector. The
dtokens generated by tokens associated with the same type con-
structor τj in T and having unique roles occur in the same equiv-
alence class (generalization of Observation 4.1). Observation 4.2
and Observation 4.3 are also valid for equivalence classes defined
using dtokens. Section 4.2 can also be generalized to dtokens. Fi-
nally, the roles of dtokens itself could be further differentiated using
one of the two techniques described earlier. As an illustration of the
last statement, consider the three dtokens formed by differentiating
roles of token 〈b〉 using Observation 4.5 with Ee1. The third dtoken
(one with context Pos(5) of Ee1) can be further differentiated into
3 new dtokens using Observation 4.5 with a different equivalence
class Ee3. For instance, the first of the 3 new dtokens corresponds
to context defined by Pos(5) of Ee1, and Pos(1) of Ee3.

4.4 Equivalence Class Generation Module
The input to ECGM is the set of input pages P. The output of

ECGM is a set of LFEQs of dtokens and pages P represented as
strings of dtokens.

First, Sub-module DIFFFORM differentiates roles of tokens in P
using Observation 4.4, and represents the input pages P as strings
of dtokens formed as a result of the differentiation. The sub-
modules FINDEQ, HANDINV and DIFFEQ iterate in a loop. In each
iteration, the input pages are represented as strings of dtokens. This
representation changes from one iteration to other because new dto-
kens are formed in each iteration. FINDEQ computes occurrence
vectors of the dtokens in the input pages and determines LFEQs.
FINDEQ needs two parameters, SIZETHRES and SUPTHRES, to
determine if an equivalence class is an LFEQ. Equivalence classes
with size and support greater than SIZETHRES and SUPTHRES, re-
spectively, are considered LFEQs. HANDINV processes LFEQs
determined by FINDEQ, as described in Section 4.2 and produces a
nested set of ordered LFEQs. DIFFEQ optimistically assumes that

each LFEQ produced by HANDINV is valid, and uses Observa-
tion 4.5 to differentiate dtokens. If any new dtokens are formed as
a result, it modifies the input pages to reflect the occurrence of the
new dtokens, and the control passes back to FINDEQ for another
iteration. Otherwise, ECGM terminates with the set of LFEQs
output by HANDINV, and the current representation of input pages
as the output.

On our running example, with SIZETHRES and SUPTHRES both
set to 3, ECGM runs for two iterations, and produces two equiv-
alence classes, E+

e1 and E+
e3, of sizes 13 and 12, respectively. The

ordered set of tokens corresponding to dtokens in E+
e1 is 〈〈html〉,

〈body〉, 〈b〉, Book, . . . , 〈/body〉, 〈/html〉〉, and that of E+
e3 is

〈〈li〉, 〈b〉, Reviewer, . . . , 〈/li〉〉.
We conclude this section with a remark on representation of dto-

kens. It might seem extremely complex to store context informa-
tion of a dtoken. In fact, it is not necessary to explicitly store any
context information of a dtoken. Context information of a dtoken
is implicitly stored in its occurrences in the pages. In our prototype
implementation we used integers to represent dtokens, and main-
tained a mapping from each dtoken integer to the token (a character
string) corresponding to the dtoken.

5. BUILDING TEMPLATE AND EXTRACT-
ING VALUES

This section describes ANALYSIS module of EXALG. The input
of ANALYSIS module is a set of LFEQs and a set of pages repre-
sented as strings of dtokens, and the output a template and a set of
values. ANALYSIS module consists of two sub-modules: CONST-
TEMP and EXVAL (Figure 10). We do not describe EXVAL in this
paper since it is reasonably straightforward to derive it.

5.1 Notation
We need the following algebra of templates to describe the recur-

sive construction of templates in CONSTTEMP: (a) If T1
S1 , T2

S2 ,
. . . Tm

Sm are templates, and C1, C2, . . . , Cm+1 are strings, T S =
〈T1, T2, . . . , Tm〉〈C1,C2,...,Cm+1〉 denotes a template, where S =
〈S1, S2, . . . Sn〉τ . T is defined by mappings T (τ) = 〈C1, C2, . . . ,
Cm+1〉, and T (τk) = Ti(τk), for all τk in Si(1 ≤ i ≤ m); (b) If
T Si

i is a template, and H a string, TS = {Ti
Si}H denotes a tem-

plate, where S = {Si}τ . T is defined by mappings T (τ) = 〈H〉
and T (τk) = Ti(τk), for all τk in Si; (c) T Si

i (for schema (Si)?)

and (TSi
i | T

Sj

j) (for schema (Si | Sj)) are similarly defined; (d)
TB denotes the trivial template for the basic type B.

Pos(p) of an ordered equivalence class E = 〈d1, d2, . . . , dn〉
is defined to be empty if dtokens dp and dp+1 always occur con-
tiguously. An equivalence class is defined to be empty if all its
positions are empty. In our running example, both E+

e1 and E+
e3 are

non-empty: Pos(6) and Pos(10) of E+
e1 are non-empty; Pos(5),

Pos(8) and Pos(11) of E+
e3 are non-empty.

For an occurrence of equivalence class E and a non-empty Pos(p)
of E , PosString(E , p) is the string formed by concatenating tokens
and equivalence classes7 that occur in Pos(p) of that occurrence of
E , but do not occur within the span of some other equivalence class
E ′ whose span is also within Pos(p) of the above occurrence of
E . As an example, PosString(E+

e1, 10) of the only occurrence of
E+

e1 in pe2 is the string “E+
e3E+

e3”. Although a dtoken formed from
token Rating occurs in Pos(10) of the above occurrence E+

e1, it is
not present in PosString(E+

e1, 10) since it is within the span of an

7More formally, some unique symbol corresponding to each equiv-
alence class. We use the name of the equivalence class (e.g., E+

e1,
E+

e3) as its symbol.

occurrence of E+
e3.

5.2 ConstTemp
Let {E1, E2, . . . , Em} be the input set of LFEQs of ANALYSIS

module. For every non-empty equivalence class Ei, CONSTTEMP

recursively constructs a template, T E i
, corresponding to Ei, and a

template, TEi,p
, corresponding to each non-empty position p of Ei.

The output template of CONSTTEMP is the template corresponding
to the root equivalence class — the equivalence class with occur-
rence vector 〈1, 1, · · ·〉8.

The template TEi
is defined in terms of TEi,p

. Let E i = 〈d1, d2,

. . . , dl〉, and let ti(1 ≤ i ≤ l) be the token corresponding to dtoken
di. Let si(1 ≤ i ≤ q) denote the non-empty positions of Ei. De-
fine q+1 strings Ci1 , Ci2 , . . . , Ciq+1 as follows: Ci1 = t1 . . . ts1 ,
Cij = ts(j−1)+1 . . . tsj (1 < j ≤ q), and Cq+1 = tsq . . . tl. The
strings Cij (1 ≤ j ≤ q + 1) just partition the tokens t1, . . . , tl us-
ing the non-empty positions of Ei. The template TEi

is defined as:
TEi

= 〈TEi,s1
, . . . , TEi,sq

〉〈Ci1 ,Ci2 ,...,Ciq+1 〉.
To construct template TEi,p

, CONSTTEMP checks if the set of
strings, PosString(Ei, p), corresponding to every occurrence of
Ei, has some recognizable pattern. Table 1 lists some patterns that
our prototype implementation of CONSTTEMP used, and the defini-
tion of TEi,p

for each pattern, if the set of strings, PosString(Ei, p),

has that pattern. In our running example, PosString(E+
e1, 6) is a

Pattern TEi,p

1 EjEj . . . {TE j
}ε

2 EjSEjS . . . Ej {TE j
}S

3 Ej or Ek TEj
| TEk

4 ε or Ej (TEj
)?

5 string of dtokens and empty eq. classes TB
6 Unknown TB

Table 1: Patterns used in definition of TEi,p

string of dtokens for every occurrence of E+
e1, which matches Pat-

tern 5 of Table 1. Therefore, TE+
e1,6

is defined to be TB .

PosString(E+
e1, 10) is always a string of 0 or more occurrences

of “E+
e3”, which matches Pattern 1, and hence TE+

e1,10
is defined

to be {TE+
e3
}ε. The reader can recursively construct TE+

e3
and ver-

ify that the output template, TE+
e1

produced by CONSTTEMP is the

same as the correct template Te.

6. EXPERIMENTS
EXALG makes several assumptions regarding the unknown tem-

plate and values used to generate its input pages. We summarize
the important assumptions:

A1: A large number of tokens occurring in template have unique
roles, to bootstrap the formation of equivalence classes and
subsequent differentiation.

A2: A large number of tokens is associated with each type con-
structor. Further, each type constructor is instantiated a large
number of times in the input pages. This assumption is en-
sures that the equivalence class derived from a type construc-
tor is recognized as an LFEQ.

A3: There is no “regularity” in encoded data that leads to the for-
mation of invalid equivalence classes.

8We can always ensure that such an equivalence class exists be
prepending and appending greater than SIZETHRES number of
dummy tokens to beginning and end of each page respectively

A4: There are “separators” around data values. In our model,
this translates to the assumption that the strings associated
with type constructors are non-empty. As we indicated in
Section 1 this assumption is made in some related in most
information extraction tasks.

All the assumptions above are heuristics. We study experimen-
tally (a) to what extent the assumptions are satisfied, and (b) the
impact on the output of EXALG when some of the assumptions are
not satisfied. For the purpose of experimentation we have built a
data extraction system based on EXALG.

6.1 Setup
We conducted experiments on 46 different input collections of

pages. These collections were obtained as follows:
• RISE [21]: (6 collections) RISE is a repository of collections

used for experimental evaluation of IE techniques. RISE in-
cludes collections used in evaluation of WIEN and STALKER.
Only 6 of the 10 collections in RISE are relevant to our extrac-
tion problem. The rest of the collections are meant for extrac-
tion from more unstructured human generated data.

• ROADRUNNER [5]: (15 collections) These represent all the col-
lections available at ROADRUNNER site [23] (except the repe-
titions from RISE).

• IEPAD [4]: (14 collections) These represent all the collections
obtained from IEPAD site [14]. The pages in these collections
are results of queries from various search-engines.

• Misc: (10 collections) These collections were crawled by us
from various well-known sites like E-bay, DBLP, Google and
Sigmod Anthology.

6.2 Evaluation
For comparison purposes, we manually generated the schema,

Sm, of the values encoded in each page, of a collection C. The
schema, Sm, was generated based on the semantics of the source.
For example, if the input consisted of Amazon book pages (Fig. 1),
the manually generated schema would have attributes like title, set
of authors and optional “list” price. We ignored values encoded as
tag attributes (e.g., urls, images) while generating Sm. Further, we
picked the granularity of the leaf attributes (attributes of basic type,
B) of Sm based on existence of separators. For example, we did
not split a date (e.g., Nov. 8 2002) into attributes for day, month
and year. Let Se denote the schema automatically extracted by our
system for Collection C. For evaluation, we considered each leaf
attribute Am in Sm, and classified it into one of the following 3
categories to reflect how successful our system was in extracting
values of Am.

• Correct: Am was classified as correct if there existed a leaf
attribute Ae in Se such that for each page in C, the set of val-
ues of Am in the page is equal to the set of extracted values
of Ae in the page.

• Partially Correct: Am was classified as partially correct if
it was not correct and there existed a leaf attribute Ae in Se

such that for each page in C, each value of Am occurred
as part of a value of Ae in that page. This happens when
the granularity of extraction is coarser than the desired gran-
ularity. For example, for Amazon book pages (Fig. 1), if
the contiguous attributes “List Price” and “Our Price” were
extracted as a single attribute by our system (with the text
“OurPrice :” occurring within each extracted value of the
attribute), then both the former attributes would be classified
as partially correct.

• Incorrect: Am was classified as incorrect if it was neither
correct nor partially correct. This happens when our system
mis-aligns values of Am, i.e., different values of Am occur
as part of values of different extracted attributes.

Our evaluation scheme serves two purposes. First, it gives us in-
sight as to what extent the assumptions A1-A4 hold. Specifically,
it can be shown that if Assumption A3 holds, and no invalid equiv-
alence classes are formed, then, none of the attributes of Sm would
be classified incorrect. In addition, if assumptions A1 and A2 are
satisfied as well, then all the attributes of Sm would be classified
as correct. Second, the evaluation scheme indicates how useful our
system is in extracting data. Clearly, the output of our system is
most useful when it extracts attributes in Sm correctly. However,
the output of our system is useful to some extent even when some
attributes of Sm are extracted only partially correctly. If a leaf at-
tribute Am of Sm was classified as partially correct (by identifying
an extracted leaf attribute Ae), then the correct values for Am can
be extracted by just focusing on the extracted values of Ae. This
task is likely to be easier than extracting values of Am from the
entire page.

Although, our evaluation scheme just checks the correctness of
leaf attributes, and not the entire schema Sm, almost always the
correctness of the leaf attributes closely reflects the correctness of
the entire schema. It is extremely hard for our algorithm to ex-
tract the leaf attributes correctly while deducing the schema of the
attributes wrongly.

6.3 Results
We have placed the detailed results of our experiments at the

URL [6]. The above link contains, for each collection, the set of
input pages in the collection, the template discovered by our sys-
tem, and the values extracted for each input page. It also has a
log of the execution of our system for each input collection. The
log contains the information like the set of LFEQs formed, the
set of strings PosString(E , p) and the pattern that matches the set
(Section 5), for every non-empty position p of an LFEQ E , and so
on. Finally, the above link contains details of our evaluation — the
manual schema Sm that we constructed for each input collection,
and for each attribute Am in Sm, the category that we assigned Am

to, and the reason for doing so.
Table 2 summarizes our experimental results. Column S of Ta-

ble 2 indicates the source of a collection (see beginning of this sec-
tion): I (IEPAD), R (RISE), RR (ROADRUNNER) and M (Misc.).
Columns N and a denote, respectively, the number of pages and
the number of attributes in the manual schema Sm for a collection;
Columns c, p and i denote the number of leaf attributes of Sm that
were classified as correct, partially correct and incorrect, respec-
tively.

The results in Table 2 clearly demonstrate that EXALG is very
effective in extracting data. For 18 or 40% of the input collections
our system correctly extracted all the attributes. For other collec-
tions there were a small number of attributes that were extracted
only partially correctly. Specifically, on an average, around 80%
of the attributes were extracted correctly. Column Acc of Table 3
shows the accuracy of our system for each of the 4 classes of col-
lections. Since the number of attributes varies widely from one
collection to other, we also computed the normalized average by
scaling the number of leaf attributes in Sm to the same value for
all collections, and this is shown for each class of collection in Col-
umn Norm. Acc. Finally, for all our inputs there were no attributes
of Sm that were incorrectly extracted.

We highlight, from our experiments, some common cases when
our system failed to extract data correctly. Since several attributes

S Site N a c p i
I1 Altavista 10 11 9 2 0
I2 Cora 10 7 7 0 0
I3 Excite 10 11 11 0 0
I4 Galaxy 10 15 12 3 0
I5 Hotbot 10 6 5 1 0
I6 LA Weekly 10 6 4 2 0
I7 Lycos 10 21 19 2 0
I8 Magellan 10 5 5 0 0
I9 Metacrawler 10 8 3 5 0
I10 Northernlight 10 7 7 0 0
I11 Openfind 10 ? ? ? ?
I12 SavvySearch 10 6 6 0 0
I13 Stptcom 10 6 6 0 0
I14 Webcrawler 10 10 10 0 0
R1 Bigbook 235 5 5 0 0
R2 IAF 200 7 1 6 0
R3 Okra 252 8 8 0 0
R4 Quote Server 200 16 16 0 0
R5 Zagat’s Guide 91 4 1 3 0
R6 LA Weekly 28 6 4 2 0

RR1 Amazon(Pop) 19 5 5 0 0
RR2 Amazon(Cars) 21 13 13 0 0
RR3 buy.com(subcat) 10 9 9 0 0
RR4 buy.com(prod) 10 11 10 1 0
RR5 wine.com(acc) 10 5 5 0 0
RR6 wine.com(prod) 10 8 4 4 0
RR7 uefa.com(teams) 20 9 9 0 0
RR8 uefa.com(play) 20 2 2 0 0
RR9 MLB(players) 10 7 7 0 0
RR10 MLB(stat) 10 62 49 13 0
RR11 Barn.&Nob. 7 5 5 0 0
RR12 Barn.&Nob.(SW) 10 4 4 0 0
RR13 nba.com 10 98 66 32 0
RR14 rpmfind.net 20 6 6 0 0
RR15 rpmfind.net 20 4 4 0 0
M1 E-bay 50 22 18 4 0
M2 Netflix 50 29 23 6 0
M3 US Open 32 35 33 2 0
M4 DBLP 25 7 2 5 0
M5 Google 20 10 6 4 0
M6 Citeseer 50 14 6 8 0
M7 Sigmod(Anth) 100 12 10 2 0
M8 Patents 50 23 16 7 0
M9 CNET 25 10 9 1 0
M10 Slashdot 24 10 8 2 0

Total 585 468 117 0

Table 2: Experimental Results

were extracted only partially correctly, clearly some assumptions
A1, A2 or A4 failed to hold. We have observed empirically that the
most common case is failure of Assumption A2, i.e., there are type
constructors that have a very few template tokens associated with
them. For example, Collection R2, on which our system performed
badly, contains a set of addresses in each page encoded with the
template9 {〈Name :∗
, (Email :∗
)?, (Organization :∗

)?, (Update : ∗
)?〉}. For this template there are just
two template tokens associated with each type constructor. Conse-
quently, these template tokens were not discovered using LFEQs,
and our system failed to correctly extract the 4 attributes above.
Interestingly, ROADRUNNER [5] also reports failing on this col-
lection. Assumption A2 also commonly failed when a set is plainly
encoded using very simple html listing constructs like 〈· · · {〈
∗ 〉} · · ·〉 (only a part of the template is shown). This hap-
pens, for example, in Citeseer(M6) where the set of citations and
set of related documents are listed using html . It seems pos-
sible to engineer our system to handle some of the above bad cases
by incorporating more knowledge of html tags into it.

9We have simplified the template slightly for exposition

Source Acc (%) Norm. Acc (%)
IEPAD 87.4 87.7
RISE 76.1 67.7

ROADRUNNER 79.8 92.5
Misc. 76.1 71.0
Total 80.0 82.7

Table 3: Accuracy grouped by source

There were also cases where Assumption A1 failed, and tem-
plate tokens did not get completely differentiated. This usually
happened for some very commonly occurring html tags, but tended
to occur only when Assumption A2 failed to hold as well. Finally,
Assumption A4 rarely failed except for semantically closely related
attributes like date and month (e.g., Nov. 8 2002) which we chose
to ignore as mentioned earlier.

Sometimes, failure of assumptions A2 and A1 makes the prob-
lem fundamentally hard, i.e., no automatic extraction algorithm can
correctly extract data. For example, each page of Collection R5
contains data on cuisine-type and set of addresses for restaurants.
This data is encoded using template 〈· · ·
 ∗
 {

∗} < br> · · ·〉. This template is clearly indistinguishable from
〈· · · {
 ∗}
 · · ·〉.10

The above example suggests that, although there is scope for im-
provement of our system, for example, by incorporating more html
knowledge, automatic extraction can never be completely accurate.
Therefore, human effort is necessary to identify attributes that have
not been extracted correctly. Such attributes should either be ex-
tracted manually or by using other techniques. Note that even tech-
niques based on training example do not currently achieve 100%
accuracy.

We briefly discuss how errors could be handled when using our
algorithm. As we pointed earlier, the extraction of partially cor-
rect attributes need not be on the entire page, but within a (usu-
ally) much smaller region of the page identified by our system. We
are exploring alternatives whereby user can provide feedback after
examining the extracted data and template, to help our system re-
extract data correctly. For example, the user might identify tokens
of template that are incorrectly extracted as data. We are currently
building a GUI in order to aid post processing of extracted data. We
expect that human input for our system during post processing step
should be significantly less than human input required for training
examples.

Our experimental results also illustrate another desirable prop-
erty of EXALG — the impact of the failed assumptions is localized.
Even for the input collections that had some partially correct at-
tributes, indicating that either Assumption A1 or A2 were violated,
there were many other attributes that were extracted correctly. If
assumptions A1 or A2 are violated for a tuple constructor τj , then
only the attributes occurring within τj and the “surrounding” at-
tributes are not correctly extracted. In the full paper, we provide
more detailed description why the impact of failed assumptions is
localized.

6.4 Input Size
EXALG makes very few assumptions about the size of the in-

put collection. As long as each type constructor occurs more than
SUPTHRES times in the input collection, it stands a chance of be-
ing discovered, subject to the other assumptions holding for the
collection. The experiments indicate that our system works well
for collections of very small size (≤ 10 pages). A large number of
pages in the collections should improve the quality of the extracted

10Except if the extraction algorithm uses the fact that the set con-
structor in the latter template never has cardinality zero, but using
this can “overfit” in most cases.

data since it is more likely that type constructors occur greater than
SUPTHRES times.

However, extraction time could become important for large col-
lections. The running time of EXALG is linear, in practice, since
the number of iterations within ECGM is almost always less than
5, and each iteration is itself linear. For our experimental set of
collections, on a 1000 MHz. CPU, the C++ implementation of
our system was able to process input pages at an average rate of
110 KB/sec. Further, it is not necessary to run EXALG on the en-
tire collection. EXALG can be modified in a straightforward man-
ner to generate a template using a small sub-set of pages and use
to generated template to extract data from a larger set, like most
previous information extraction techniques do.

6.5 Parameters
Recall that EXALG uses two parameters — SIZETHRES and

SUPTHRES. In our experiments we set SIZETHRES and SUPTHRES

to an extremely small value: 3. Decreasing these two parameters
increases the likelihood of Assumption A2 being satisfied while
decreasing the likelihood of that of Assumption A3. Increasing the
value of these two parameters has the opposite effect. As our re-
sults indicate the value of 3 works well in practice. In addition,
we experimentally verified that increasing the value of these two
parameters gradually reduces the correctness of extraction.

7. RELATED WORK
There has been a lot of recent work related to Information Ex-

traction. These can be classified along different dimensions:
sources of information targeted (human vs. machine generated),
degree of automation, complexity of data extracted (flat vs. nested).
Section 1 briefly mentioned some of the closely related work. We
refer the reader to a recent survey [16] and tutorial [24] for more re-
lated work. Here we focus on highlighting the differences between
our work and, ROADRUNNER and IEPAD.

IEPAD uses repeating patterns of closely occurring HTML tags
to identify and extract data. The above technique is applicable to
extracting data of a limited type: set of flat tuples, from each page.
For example, this technique is suitable to extract data from search
results pages, as evidenced by their experimental collections (Ta-
ble 2). Further, since not all repeating patterns contain useful data,
IEPAD uses various heuristic techniques to characterize those that
do.

Our work is most closely related to the ROADRUNNER [10, 5].
ROADRUNNER uses a model of page creation using a template that
is very similar to ours. ROADRUNNER starts off with the entire first
input page as its initial template. Then, for each subsequent page
it checks if the page can be generated by the current template. If
it cannot be, it modifies its current template so that the modified
template can generate all the pages seen so far. There are several
limitations to the ROADRUNNER approach:
1. ROADRUNNER assumes that every HTML tag in the input pages

is generated by the template. This assumption is crucial in
ROADRUNNER to check if an input page can be generated by
the current template. This assumption is clearly invalid for
pages in many web-sites since HTML tags can also occur within
data values. For example, a book review in Amazon [2] could
contain tags — the review could be in several paragraphs, in
which case it contains 〈p〉 tags, or some words in the review
could be highlighted using 〈i〉 tags. When the input pages con-
tain such data values ROADRUNNER will either fail to discover
any template, or produce a wrong template.

2. ROADRUNNER assumes that the “grammar” of the template
used to generate the pages is union-free. This is equivalent

to the assumption that there are no disjunctions in the input
schema. The authors of ROADRUNNER themselves have
pointed in [5] that this assumption does not hold for many col-
lections of pages. Moreover, as the experimental results in [5]
suggest, ROADRUNNER might fail to produce any output if
there are disjunctions in the input schema.

3. When ROADRUNNER discovers that the current template does
not generate an input page, it performs a complicated heuris-
tic search involving “backtracking” for a new template. This
search is exponential in the size of the schema of the pages. It
is, therefore, not clear how ROADRUNNER would scale to web
page collections with a large and complex schema.

8. CONCLUSION
This paper presented an algorithm, EXALG, for extracting struc-

tured data from a collection of web pages generated from a com-
mon template. EXALG first discovers the unknown template that
generated the pages and uses the discovered template to extract the
data from the input pages. EXALG uses two novel concepts, equiv-
alence classes and differentiating roles, to discover the template.
Our experiments on several collections of web pages, drawn from
many well-known data rich sites, indicate that EXALG is extremely
good in extracting the data from the web pages. Another desirable
feature of EXALG is that it does not completely fail to extract any
data even when some of the assumptions made by EXALG are not
met by the input collection. In other words the impact of the failed
assumptions is limited to a few attributes.

There are several interesting directions for future work. The
first direction is to develop techniques for crawling, indexing and
providing querying support for the “structured” pages in the web.
Clearly, a lot of information in these pages is lost when naive key
word indexing, and searching is used. We indicate two specific
problems in this direction. First, how do we automatically locate
collections of pages that are structured? Second, is it feasible to
generate some large “database” from these pages? Any technique
for solving the latter problem has to be much less sophisticated
than the one discussed here, possibly by sacrificing accuracy for
efficiency. Also when we work at the scale of the entire web we
might be able to leverage the redundancy of the data on the web as
in Brin [3]. The second direction of work is to develop techniques
for automatically annotating the extracted data, possibly using the
words that appear in the template.

Acknowledgments
We thank Mayank Bawa and Chen Li for many stimulating discus-
sions on the problem. This work was partially supported by NSF
Grant EIA-0085-896.

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley, Reading, Massachussetts, 1995.
[2] Amazon.com. http://www.amazon.com.
[3] S. Brin. Extracting patterns and relations from the world

wide web. In WebDB Workshop at 6th Intl. Conf. on
Extending Database Technology, 1998.

[4] C. Chang and S. Lui. IEPAD: Information extraction based
on pattern discovery. In Proc. of 2001 Intl. World Wide Web
Conf., pages 681–688, 2001.

[5] V. Crescenzi, G. Mecca, and P. Merialdo. ROADRUNNER:
Towards automatic data extraction from large web sites. In
Proc. of the 2001 Intl. Conf. on Very Large Data Bases,
pages 109–118, 2001.

[6] Experimental results. http:
//www-db.stanford.edu/˜arvind/extract/.

[7] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. D. Ullman, and J. Widom. The
TSIMMIS project: Integration of heterogenous information
sources. Journal of Intelligent Information Systems,
8(2):117–132, 1997.

[8] M. Garofalokis, A. Gionis, R. Rastogi, S. Seshadr, and
K. Shim. XTRACT: A system for extracting document type
descriptors from XML documents. In Proc. of the 2000 ACM
SIGMOD Intl. Conf. on Management of Data, pages
165–176, 2000.

[9] E. M. Gold. Language identification in the limit. Information
and Control, 10(5):447–474, 1967.

[10] S. Grumbach and G. Mecca. In search of the lost schema. In
Proc. of 1999 Intl. Conf. of Database Theory, pages
314–331, 1999.

[11] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang.
Optimizing queries across diverse data sources. In Proc. of
the 1997 Intl. Conf. on Very Large Data Bases, pages
276–285, 1997.

[12] J. Hammer, H. Garcia-Molina, J. Cho, A. Crespo, and
R. Aranha. Extracting semi structure information from the
web. In Proceedings of the Workshop on Management of
Semistructured Data, 1997.

[13] C. N. Hsu and M. T. Dung. Generating finite-state
transducers for semi-structured data extraction from the web.
Information Systems Special Issue on Semistructured Data,
23(8):521–538, 1998.

[14] IEPAD:. http://www.csie/ncu.edu.tw/˜chia.
[15] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper

induction for information extraction. In Proc. of the 1997
Intl. Joint Conf. on Artificial Intelligence, pages 729–737,
1997.

[16] A. Laender, B. Ribeiro-Neto, A. da Silva, and J. Teixeira. A
brief survey of web data extraction tools. Sigmod Record,
31(2), 2002.

[17] A. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source
descriptions. In Proc. of the 1996 Intl. Conf. on Very Large
Data Bases, pages 251–262, 1996.

[18] L. Liu, C. Pu, and W. Han. XWRAP: An XML-enabled
wrapper construction system for web information sources. In
Proc. of the 2000 Intl. Conf. on Data Engineering, pages
611–621, 2000.

[19] I. Muslea, S. Minton, and C. A. Knoblock. A hierarchical
approach to wrapper induction. In Proc. of Third Intl. Conf.
on Autonomous Agents, pages 190–197, 1999.

[20] L. Pitt. Inductive inference, DFAs, and computational
complexity. Analogical and Inductive Inference, pages
18–44, 1989.

[21] RISE:. http://www.isi.edu/˜muslea/RISE/.
[22] J. Rissanen. Modeling by shortest data description.

Automatica, 14:465–471, 1978.
[23] ROADRUNNER:. http://www.dia.uniroma3.it/

db/roadRunner/index.html.
[24] S. Sarawagi. Automation in InformationExtraction and Data

Integration (tutorial). VLDB, 2002.
[25] J. D. Ullman. Information integration using logical views. In

Proc. of 1997 Intl. Conf. on Database Theory, pages 19–40,
1997.

	page1: 337
	page2: 338
	page3: 339
	page4: 340
	page5: 341
	page6: 342
	page7: 343
	page8: 344
	page9: 345
	page10: 346
	page11: 347
	page12: 348

